PCB 設計
掌握關鍵 PCB 設計概念、原理圖技巧及最佳實務流程,協助工程師打造具備可製造性且穩定可靠的電路板。
精選貼文
設計工具與最佳實務
電子電路解算器:簡化電路分析,讓每個人都能輕鬆上手
在電子領域,最具挑戰性的任務之一就是求解複雜的電路。無論您是正在完成作業的學生、進行 DIY 專案的愛好者,還是設計先進系統的工程師,擁有合適的電子電路求解工具都能節省時間、減少錯誤並提高效率。這正是電子電路解算器的作用所在。這些工具旨在使電路分析更簡單、更快速、更準確。 在本文中,我們將介紹電子電路解算器是什麼、它的特點、它是如何運作的,以及為什麼它會改變任何從事電子電路工作的人的遊戲規則。 1.什麼是電子電路解算器? 電路求解器是一些程式或網站,可以幫助你了解電路的工作原理以及它們應該如何運作。這些工具會自動完成工作,因此你無需手動求解方程式並計算電壓、電流和功率。 它們的工作原理是模擬你的電路,找到電阻器、電容器和電感器等零件,然後找出你想要的因素,例如: ⦁ 部件之間的電壓下降。 ⦁ 電流流經每個分支。 ⦁ 電阻器斷電。 一些更複雜的解算器甚至可以讓您在建造真實電路之前查看訊號、嘗試不同的佈局並改進您的設計。 2. 電子電路解算器如何運作? 步驟很簡單: ⦁輸入電路設計:首先,將您的電路設計輸入到求解器中。您可以在程式中手動繪製電路圖,也可以上傳其他人已經繪製的原理圖。 ⦁ 定義電路參數:......
Jul 23, 2025
最新貼文
設計基礎與原理圖
PCB 電路板設計:初學者逐步指南
印刷電路板(PCB)是大多數現代電子設備的骨幹,提供連接電子元件的平台。對初學者來說,PCB 設計可能看似複雜,但只要方法正確,就能成為一項可掌控且回報豐厚的任務。本指南將帶你一步步完成 PCB 設計流程,從規劃到最終檢查。 今天,我們以鋰離子電池充電模組為例,走完整個設計流程。TP4056 是最常見的充電模組之一,因此為它打造「第二代」會是件很棒的事。為了提高電流額定值,我們將晶片換成新的 IP2312,同時保持與 TP4056 相同的 PCB 尺寸,使其具備高達 3 A 的驅動能力。若要觀看完整教學 ,請參考這篇文章。 印刷電路板設計步驟: 步驟 1:了解電路需求 在進入設計軟體之前,先清楚掌握你想打造的電路。先在紙上或使用 KiCad、Eagle 或 EasyEDA 等軟體繪製草圖。納入所有必要元件,如電阻、電容、微控制器與連接器,並確保各元件正確連接以實現功能。通常電路設計從紙筆開始,靈感源自現實問題;在我們的案例中,問題就是 TP4056 充電時間過長。 步驟 2:選擇 PCB 設計軟體 對初學者而言,介面友善的 PCB 設計軟體至關重要。常見選擇包括 KiCad、Eagle 與 Eas......
Jan 06, 2026
設計基礎與原理圖
PCB 絲印:您需要知道的一切
絲印是 PCB 的最上層,在 PCB 製造流程中,加上絲印是最後一道步驟。此層透過油墨標記來識別 PCB 元件、測試點、符號、商標及其他重要資訊。絲印在協助製造商與設計者透過 PCB 上的註解輕鬆辨識元件方面,扮演關鍵角色。 絲印油墨是一種特殊配方的非導電環氧樹脂,有多種顏色,業界最常見為黑色與白色。PCB 設計軟體通常對絲印層採用標準字體,但設計者亦可依需求選用其他字體。本文將探討絲印的重要性、設計準則、實用技巧,以及如何將自訂字體加入絲印層。查看 JLCPCB 工廠完整 PCB 製造指南。 什麼是 PCB 絲印? 想像道路與街道缺乏方向/距離文字與地標,是否毫無意義?PCB 絲印就如同地標與文字,提供各電路節點、零件及其他電路的文字資訊。絲印主要用於標記測試點與註解元件前綴名稱,可在製程中透過類似防焊層的 UV 液態感光成像製程完成;若需極細線寬,製造商可能改用「直接圖例印刷」替代方案。 PCB 絲印應包含哪些內容? 以下資訊應納入 PCB 絲印: 列印公司商標、設計者/製造商名稱 警示符號,例如高壓 版本號碼,如 Ver1.0、V2.0、V3.0、V4.0 等 測試點 元件編號與方向 連接器......
Jan 06, 2026
設計工具與最佳實務
PCB 設計中銅箔走線的創新應用
銅導線是印刷電路板(PCB)中不可或缺的元件,為電流在整個電路板上提供傳導路徑。銅導線的表面處理對其功能性與可靠性有決定性影響。目前有多種表面處理可供選擇,每種都有其優勢,正確的選擇取決於銅導線的預期用途。本文將探討銅導線在 PCB 設計中的創新應用,以及可提升其功能的表面處理方式。 為 PCB 設計中的銅導線選擇合適的表面處理 銅導線的表面處理對其功能性與可靠性影響重大。常見的表面處理包括 ENIG、HASL、沉積銀、OSP 與沉積錫,每種都有其優點,需依銅導線的用途選擇。 ENIG 適用於需要高可靠性與抗腐蝕性的銅導線,常見於航太與工業電子。HASL 成本較低,導電性良好,但可靠性不如 ENIG 且較易腐蝕。沉積銀導電性佳、接觸電阻低,但長時間易氧化。OSP 價格低廉、焊錫性良好,但可靠性較低且易氧化。沉積錫表面均勻、焊錫性優異,但可靠性較低且易產生晶鬚導致短路。 銅導線作為電容與電感:實現高效 PCB 的設計技巧 銅導線可設計成電容或電感以儲存電能。透過特定形狀設計,可省去額外元件,縮小體積並降低成本。表面處理需依用途選擇:作為電容時,ENIG 提供優異抗腐蝕性與可靠性;作為電感時,HASL......
Jan 06, 2026
設計基礎與原理圖
簡化卻精細:單面 PCB 設計
印刷電路板(PCB)是極為關鍵的電子元件,既是電子裝置的支撐結構,也是電子元件間電氣連接的載體。自1925年問世以來,印刷電路板不斷演進,佈局日益精細、層數更多、結構更複雜。然而,即便在這些進步之中,最基本的形式——單面PCB——仍廣泛應用於收音機、洗衣機、遙控器等各種工業產品。 單面PCB的結構 傳統 FR4 單面PCB包含一側銅箔、一側 防焊層,以及兩面絲印(依客戶設計而定)。由於單面板製程中省略電鍍步驟,孔壁無銅(注意:板厚0.4 mm、0.6 mm、0.8 mm與2.0 mm預設以雙面板生產,以最大化板材利用率,這些板厚的導通孔會有電鍍銅)。 單面PCB的焊接 受限於僅單面佈線的結構,焊接只能在該面裸露的焊墊上進行。依元件結構不同,衍生出兩種焊接方式: 1. 同面焊接 元件本體與電路位於同一側,常用於SMT元件焊接。 2. 對側焊接 元件本體與電路分屬兩側,常見於插件元件焊接。 工程檔案設計 實際設計時,完整的PCB需分層繪製。 以雙面板為例,設計於頂層的圖案可直接觀看(例如頂層文字正向顯示);反之,底層圖案具有鏡像效果:若在底層設計文字且於設計軟體中看起來是正的,實際板子上的文字會因鏡像......
Jan 06, 2026
設計工具與最佳實務
如何避免 PCB 設計中的陷阱
設計印刷電路板(PCB)時,必須仔細考量多項因素,才能確保製程順利並避免潛在陷阱。從孔徑與槽孔設計,到線寬與銅箔灌注,掌握這些要點對於打造可靠且功能正常的 PCB 至關重要。本文將探討 PCB 設計中的常見陷阱,並提供克服建議。 導通孔孔徑設計 在 PCB 製造中,0.3 mm 的孔被視為標準孔,小於 0.3 mm 則歸類為小孔。 小孔可能對生產造成多項負面影響: 電鍍困難:孔徑越小,越容易發生電鍍不良或無電鍍。針對小孔,JLCPCB 採用四線低阻製程以確保可靠度。 加工效率降低:小孔需降低鑽孔速度並使用更短鑽頭,導致一次可鑽板材數量減少。因此設計時建議優先採用 0.3 mm 以上孔徑,僅在空間受限時才考慮小孔。 JLCPCB 的最小製程能力: 單/雙面板:0.3 mm(內徑)/0.45 mm(外徑) 多層板:0.15 mm(內徑)/0.25 mm(外徑) 外徑應比內徑大 0.1 mm 以上,建議差距 ≥0.15 mm。 導通孔槽孔設計 PCB 鑽孔中的短槽:長度小於寬度兩倍的槽孔稱為短槽。短槽的最佳長寬比為長度/寬度 ≥2.5(極限值 ≥2)。 長槽選用噴錫處理:若槽孔需經噴錫,建議單邊最小寬度......
Jan 06, 2026
設計工具與最佳實務
5 個常見的 PCB 設計新手錯誤(以及如何避免)
印刷電路板(PCB)是現代電子產品中不可或缺的元件,從智慧型手機、筆記型電腦到汽車與家電都能見到它的身影。PCB 提供了一種高效連接電子元件的方式,能以精簡且可靠的途徑傳輸訊號與電力。然而,設計 PCB 並非易事,尤其對初學者而言。 本文將探討初學者最常犯的 5 大 PCB 設計錯誤及其解決方法。這些錯誤可能導致訊號干擾、散熱問題、電源供應異常,甚至損壞元件。避開這些陷阱,才能確保你的 PCB 既穩定又可靠。 錯誤一:未使用接地層 接地層是 PCB 上大面積且連接到地的銅面,可作為屏蔽層,防止電磁干擾(EMI)影響板上的訊號。若未使用接地層,訊號容易夾雜雜訊,進而降低電路效能。 解決方法:在設計中加入接地層。大多數 PCB 設計軟體都內建快速添加接地層的功能,只需新增一層並將其連接到地網路,即可形成大面積銅面作為接地層。 錯誤二:未檢查間距規則 間距規則(DRC)指的是 PCB 上兩個導電物件(如兩條走線或走線與焊墊)之間的最小距離。忽略間距規則可能導致短路或訊號干擾。 解決方法:在PCB 設計軟體中設定間距規則。多數軟體提供「Rooms」功能,可針對不同區域或物件設定最小間距,避免元件過於靠近而......
Jan 06, 2026
設計工具與最佳實務
選擇合適的 PCB 形狀
為 PCB 選擇合適的外形是至關重要的決策,會大幅影響電子裝置的整體效能、可製造性與美觀。雖然矩形 PCB 最常見且用途廣泛,但還有各種其他形狀能在特定應用中提供獨特優勢。在這份全面指南中,我們將探討不同的 PCB 形狀,為每種形狀提供範例,並展示它們如何優化設計與功能。透過了解 PCB 外形的重要性並參考具體範例,您就能做出明智決策,提升電子系統的表現。 矩形 PCB:經典之選 矩形 PCB 是歷經考驗的可靠選擇,廣泛應用於各行各業。其矩形外形簡單、易於製造,且與標準製程相容。這種形狀可讓元件高效擺放、訊號走線簡單,並能與標準外殼整合。例如,高階筆電通常採用矩形 PCB,以最大化內部空間利用率。矩形設計讓處理器、記憶體、儲存裝置及其他元件得以緊湊排列,造就輕巧而強大的運算裝置。 圓形 PCB:緊湊設計的最佳解 圓形 PCB 在空間有限或追求獨特外觀的應用中特別有利。圓形無尖角,可減少應力集中點,提升機械可靠性。智慧手錶、健身追蹤器與小型醫療裝置常見圓形 PCB。舉例來說,採用圓形外觀的健身追蹤器 PCB,能在手腕上最佳化空間利用,同時提供吸引人且符合人體工學的造型。圓形設計讓感測器、電池與顯示模......
Jan 06, 2026
訊號與電源完整性
關於如何確定電路阻抗公式的 8 個驚人事實
在分析電路行為與最佳化其效能時,判定電路的阻抗至關重要。阻抗常與電阻混淆,但在許多電子應用中—尤其是印刷電路板(PCB)設計—扮演重要角色。本文將探討八個關於判定電路阻抗及其在 PCB 設計中重要性的驚人事實。我們將先檢視阻抗與電阻的差異,再探討 PCB 中阻抗匹配的重要性,最後說明在 PCBA 製作過程中如何最佳地運用阻抗公式。 阻抗與電阻有何不同? 在電路中區分阻抗與電阻極為關鍵。電阻是材料特性對電流所產生的阻礙;而阻抗則是電阻與電抗的綜合體。電抗反映了電容或電感對電流流動所造成的阻礙。工程師若能理解此差異,便能更準確地分析電路行為並最佳化設計。 為何 PCB 須重視阻抗匹配? 阻抗匹配是 PCB 設計的關鍵環節。阻抗不匹配會導致訊號反射,造成效能低落與訊號完整性下降。阻抗匹配可確保最大功率傳輸、減少訊號衰減,並提升整體電路效率。PCB 設計師經常使用阻抗計算器與公式,計算出最合適的元件數值,以達成阻抗匹配。 阻抗公式:電路分析的重要工具 阻抗公式是分析交流電路極為實用的工具,可讓工程師計算系統對交流電流的總阻抗。公式為 Z = R + jX,其中 Z 為阻抗,R 為電阻,X 為電抗。工程師利......
Jan 06, 2026
設計基礎與原理圖
什麼是防焊層,它如何影響您的 PCB 設計?
防焊油墨(solder mask)在 PCB 製造中或許不是最刺激的話題,但絕對是最關鍵的一環。若沒有適當的防焊層,您的印刷電路板(PCB)可能出現短路、橋接、腐蝕等昂貴又耗時的問題。因此,若想確保電子產品的品質、可靠性與壽命,您必須徹底了解防焊油墨——從其用途、種類到應用與設計實踐。在本終極指南中,我們將用清晰的說明、視覺輔助與實際案例,帶您掌握所有必備知識。無論您是經驗豐富的工程師還是好奇的業餘玩家,都能獲得寶貴見解與實用技巧,提升對防焊油墨的理解並取得更好的成果。現在,就讓我們一起潛入防焊油墨的迷人世界,揭開它的秘密! 防焊油墨的用途是什麼? 在深入細節之前,先釐清防焊油墨的目的與優點。簡單來說,防焊油墨是一層薄薄的聚合物材料,用來覆蓋並保護 PCB 上的銅箔線路,免受灰塵、濕氣與高溫等外部因素侵害。防焊層也提供絲印與元件之間的視覺對比,方便檢修。此外,它能提升可焊性,阻止焊錫流到非預期區域,避免橋接與短路。 防焊油墨的主要功能之一是保護銅箔線路免受外部因素影響,並確保 PCB 的可焊性。例如,灰塵與髒汙會累積在銅箔上,降低導電性,導致訊號損失或雜訊;濕氣則可能腐蝕銅箔,使其斷裂或弱化,造成......
Jan 06, 2026
設計工具與最佳實務
提升您的電路設計技巧:改善效能的提示與技術
電路設計是現代電子學的關鍵環節,直接影響電子裝置的功能、效能與可靠度。因此,電子工程師與設計人員必須掌握最優秀的電路設計軟體工具。本文將介紹 2023 年最受歡迎的電路設計軟體,並提供專家建議與最佳實務,助您完成高品質的電路設計。 為何電路設計如此重要? 電路設計涵蓋從簡單電路到複雜整合系統的創建過程。電路由 電子元件(如電阻、電容、電晶體)依特定方式排列,以產生所需的電氣輸出。設計好壞將決定功能、效能與可靠度,是工程師與設計人員不可忽視的核心課題。 1. 功能性 電路設計的首要任務,是確保裝置能完成預定功能。設計必須符合電壓、電流、頻率等規格,並在印刷電路板(PCB)的尺寸與形狀限制下完成佈局。優秀的設計能讓裝置如預期運作,滿足終端使用者需求。 2. 可靠度 電路設計直接關係到產品壽命。設計不良可能導致失效或異常,例如電源電路不穩,使電壓波動並損壞其他元件。穩健的設計可提升可靠度,降低故障率。 3. 效能 電路設計決定裝置能否在最低功耗下達到最高效率。設計時需抑制雜訊與干擾,並確保裝置在溫濕度等容許範圍內穩定運作。 4. 成本 設計階段就決定後續生產成本。不良設計會增加製造與測試時間,推高整體費......
Jan 06, 2026
高速與射頻設計
高速受控阻抗 PCB 的完整疊構設計
在不斷演進的電子世界中,高速受控阻抗 PCB 對於追求可靠效能的設計變得日益重要。隨著現代裝置需要更快的資料傳輸速率與最小的訊號失真,工程師在設計受控阻抗 PCB 時必須考量多項因素。本文將全面介紹受控阻抗 PCB 設計,聚焦於疊構考量、實際案例以及阻抗控制 PCB 計算器的使用。 什麼是受控阻抗 PCB? 受控阻抗指的是在 PCB 傳輸線中管理電容、電感與電阻等電氣特性,其主要目標是在訊號路徑上維持一致的阻抗位準,將反射與訊號衰減降至最低。需要阻抗控制的應用包括高速數位電路、RF 通訊系統與敏感的類比電路。 為何阻抗控制如此重要? 隨著資料速率持續提升,訊號完整性成為關鍵議題。未受控的阻抗可能導致訊號反射、串擾與電磁干擾(EMI),進而造成資料損毀、通訊錯誤,甚至系統失效。受控阻抗 PCB 透過管理傳輸線上的阻抗來維持訊號完整性。 高速受控阻抗 PCB 的疊構考量 在設計高速受控阻抗 PCB時,工程師必須考量疊構,其會影響電路板的電氣效能、製造複雜度與成本。以下為需評估的重點: 1. 層數 PCB 的層數會影響其複雜度與成本。更多層數可提供更佳的阻抗控制、降低 EMI 並實現更密集的佈線,然而也......
Jan 06, 2026
設計基礎與原理圖
掌握 PCB 電路板電路圖:從零開始到像專業人士一樣閱讀與繪製
在為實際應用設計電路時,最好使用 PCB。PCB 是電子系統的正式電氣表示。如果你不希望元件之間的線路雜亂無章,最好將其轉換為電路板。設計 PCB 有兩個步驟:首先是線路圖設計。線路圖顯示了 IC、電容器、電阻器及其他元件如何互相連接。 線路圖是我們用來產生 PCB 模擬與測試向量的藍圖。第二步是設計 PCB 本身,因為我們從線路圖知道這些元件在板子上將如何連接,便於解讀。正式來說,從線路圖轉到 PCB 時,軟體會產生網表,再用來連接焊盤與元件。在 USB 3.x Hub 線路圖範例中,我們採用了典型的現代 數位設計,具有 中央 IC、穩壓電源路徑、USB 連接器與去耦網路。 線路圖 vs PCB 佈局——你必須了解的兩種圖 每個硬體系統都使用兩種互補的圖來記錄: 1. 線路圖(邏輯設計): 以符號形式呈現每個元件,並標示適當的輸入/輸出與電源接腳。利用這些功能區塊,我們可以表示電路的電氣連接。它定義了所有規則、電路行為與元件工作條件。使用符號、網路與功能區塊。之所以稱為邏輯,是因為電路的運作取決於我們在此處所做的連接。 2. PCB 佈局(實體實現): 在紙上電路運作良好,我們可以做模擬,但實際......
Jan 06, 2026
設計基礎與原理圖
PCB 元件深入解析:基本零件、功能與智慧選型指南
PCB 由主動、被動與機電元件混合組成,共同協作。主動元件用來切換與放大電氣訊號;被動元件不會放大訊號,而是用於儲存與耗散能量;機電元件如開關與繼電器,則透過機械裝置實體連接或斷開電路。PCB 通常包含八大家族元件,你會經常接觸: 元件 主要功能 電阻 限流、上拉、分壓 電容 儲能、去耦、濾波、定時 電感 儲能、濾噪、扼流 二極體(含 LED) 單向導通、整流、指示 電晶體(BJT / MOSFET) 切換與放大 積體電路(IC) 單晶片實現複雜功能 連接器 與外部設備電氣互連 開關 / 繼電器 手動或受控切換電路 每個家族成員眾多,但這八大類涵蓋了你將在 PCB 上放置的絕大多數元件。認識它們有助於你辨識「板子上到底有什麼」,並為深入學習奠定基礎。 主動 vs 被動 vs 機電元件解析 主動元件:需要電源才能運作,可放大或切換訊號。例如:電晶體與半導體 IC。 被動元件:不需外部電源即可運作。電阻依歐姆定律限流,電容則在電場中儲存電荷。被動元件是「螺絲與螺帽」,負責準備與塑形訊號。例如:電源供應器中,大電容與電感用於濾波,電容吸收與釋放能量以平滑漣波,電感則抑制電流突變。 機電元件:連接電氣與物......
Jan 06, 2026
訊號與電源完整性
擴大機 PCB 設計:打造無雜訊 Hi-Fi 電路板
設計高傳真音訊擴大機 PCB 需要兼顧物理原理與現代技術。我們必須維持訊號純淨,同時確保電路板可製造。音訊擴大機電路應從純淨的電源與適當濾波開始。使用低雜訊輸入級,搭配正確偏壓與輸入耦合電容。我們將看到如何加入旁路與去耦電容的設計技巧。確保良好接地以降低哼聲。加入穩定網路,例如輸出端的 Zobel 網路。並保持訊號路徑短且與電源走線分離以降低雜訊。來看看核心挑戰。 雜訊、熱、接地——三大殺手 雜訊:假設你正在處理 GHz 等級的數位訊號,由於訊號本質會產生諧波。若任何走線的電長度恰好等於該頻率,就會形成共振。於是你無意間在 PCB 上製造了一根天線,既不需要也不想要,因而產生雜訊。同樣情況也發生在兩條數位走線平行、各自攜帶不同資訊,或把數位走線走在類比區時。 熱:功率電晶體與 AB 類輸出級會產生熱。熱管理不是開玩笑;必須遵循導熱孔、大銅箔與適當散熱片等準則。忽視熱,電路板就會教你漂移與偏壓偏移。 接地:接地就像 PCB 佈局的 Excel 表,看起來無聊,一出錯就慘了。接地不良會導致大量訊號與電源完整性問題。訊號回流路徑需要訊號地,電源 PDN 需要電源參考。能量在 PCB 介電層間以波導形式流......
Jan 03, 2026
設計工具與最佳實務
空白 PCB 與零件:在空板上的建構之旅
空白 PCB 指的是尚未放置任何元件的未組裝電路板。它由覆銅基板製成,經過鑽孔、阻焊與表面處理,是工程師進行原型、實驗與 DIY 專案的畫布。這類單純的 PCB 不含元件。讓我們深入探討產業採用的標準與技術。 通用空白板 vs 預佈線原型板 通用空白板為覆銅板與通用洞洞板,屬於覆蓋銅箔的絕緣基板,可自行蝕刻或手動配線,適合客製形狀與一次性實驗,常用於實驗室、小量蝕刻或手動設計走線。 預佈線原型板則為洞洞板與 SMD 網格板,已預製孔陣列或 SMD 焊盤,方便由麵包板過渡到 PCB,適合 DIY 專案,優勢在於快速而非客製走線。兩者各有定位:通用空白板重客製,預佈線原型板重速度。 覆銅類型:單面 vs 雙面 vs 多層 單面 (1 層): 僅在電路板一側覆銅,成本低、機械穩定性佳,適合不需複雜走線且可接受跳線的專案。 雙面 (2 層): 雙面覆銅並有鍍通孔與導通孔,可在兩面走線,最常見。通常一面為地平面,另一面為訊號走線,是複雜度較低 PCB 的經濟選擇。 多層 (4 層以上): 針對高密度與複雜設計,需多層與適當疊構,以控制阻抗或高雜訊/高速電路。高速設計時須兼顧訊號與電源完整性。 空白 PCB ......
Jan 03, 2026
設計工具與最佳實務
如何用 Python 打造專屬的 PCB 走線寬度計算器
我們都知道 PCB 走線的重要性,但設計完美走線是否有固定規則?當然,所有規則都在 IPC 指南中列出。讓我們深入探討走線,包括其長度、寬度、載流能力以及 PCB 設計中存在的寄生類型。我們都知道 PCB 走線由銅製成,整體厚度為 1 或 2 盎司的薄層。由銅製成並不代表沒有電阻。電阻的基本規則是:走線越厚越寬,電阻越低;若走線細且長,則電阻較高。誰會希望因走線而損失訊號功率? 讓我們以一個例子開始:如果我正在設計一塊電源 PCB,走線長 10 mm,流經電流為 5 A,那麼厚度應該是多少?我們需要查閱 IPC 來計算,但在電腦時代,手算已不再必要!是的,您可以使用線上計算器,但為何要依賴它們?我們將設計獨立的程式碼 回到核心問題——我的銅走線應該多寬?答案取決於多個因素,如所需承載的電流、可接受的溫升、銅厚度,以及走線位於內層或外層。為簡化流程,我基於IPC-2152 指南開發了 Python 走線寬度計算器。本文將介紹設計流程、考慮參數與工具功能,並說明如何在任何線上 Python 編譯器中執行。 需考慮的參數 設計此計算器時,我納入了影響走線寬度的關鍵參數: 1. 電流容量 (A) – 走線......
Jan 03, 2026
設計工具與最佳實務
初學者應避免的 5 個常見 PCB 設計錯誤
然而,在科技與科學領域中,有許多藝術的空間;我們在設計時實際上是在創作藝術,這是真的!一種需要大量數學與物理現象的藝術。今天,我們將討論一種類似的藝術,也就是 PCB 設計。每位電子工程師最終都希望將電路實現在 PCB 上來解決特定問題。因為它在電子領域非常普遍,JLCPCB 團隊開始了這些教育部落格。今天,在本指南中,我們將探討一些在PCB 設計中新手常見且應避免的設計錯誤,並深入了解背後的科學原理。 1. 規劃不良與元件擺放不當 如今,由於裝置的高度整合,我們使用包含數位與類比部分的混合訊號系統。類比部分速度較慢但易受雜訊影響;另一方面,數位部分以高頻運作,成為雜訊的主要來源。因此,在設計此類混合訊號電路時,我們應遵循設計規則。將數位與類比部分至少分開 20H,其中 H 為兩層 L1 與 L2 之間的距離。分開擺放可降低雜訊,並避免其他層的走線交叉。不良的擺放會增加走線長度(更高的損耗與 EMI)並惡化散熱,也使電源佈線變複雜,並經常在佈線時被迫使用許多過孔與跨接。 如何避免: 將功能區塊(電源、類比、數位、RF)分組並朝向,使相關接腳之間的連線最短。 對混合訊號使用 20H 法則。 預留測試......
Jan 03, 2026
設計工具與最佳實務
PCB 設計工具全面解析:從零成本到企業級
每片 PCB 都始於合適的工具組,從簡單的免費編輯器到百萬美元套裝軟體。現代 EDA 工具涵蓋完整流程,從線路圖到佈局與走線。某些 EDA 工具內建訊號模擬器,能自動化 PCB 設計的繁瑣部分。如今,一套簡單工具即可處理線路圖繪製、佈局、走線、封裝建立與 BOM 產生。使用這類軟體就像為電路板提供藍圖。本文將探討不同 EDA 工具的專長,並觀察它們在複雜或嚴苛設計上的表現。 線路圖繪製 → 佈局 → 模擬 → 發布 線路圖繪製:在線路圖編輯器中繪製含元件與網路的電路。這份邏輯圖即 PCB 的藍圖,所有網路與元件皆在此定義。優秀的擷取工具可檢查電氣規則(ERC)並對線路圖執行 SPICE 模擬。現代套裝軟體可自動從線路圖產生網表與 BOM,確保資訊完整。 PCB 佈局:接著進行實體設計。設定板尺寸與疊構後,將元件封裝拖曳到電路板上並佈線銅跡。EDA 會執行設計規則檢查,如間距、走線寬度與阻抗規則。實務上,佈局工具會協助結合線路圖資料、擺放與佈線,簡言之,將整齊的線路圖轉化為實體電路板。 模擬與驗證:送製造前應先模擬或驗證設計。基礎 SPICE 或訊號完整性模擬器可在線路圖或已佈線的電路板上執行。許多......
Jan 03, 2026
設計工具與最佳實務
PCB 電氣精通:設計、測試與除錯
PCB 電氣設計涵蓋訊號完整性、電源傳輸、安全性與 EMC。把這四項視為支撐設計的四大支柱。訊號支柱代表繞線時保持資料完整並避免反射;電源支柱則透過平面銅箔、去耦電容與散熱來實現強健配電;安全支柱規範絕緣與沿面距離;EMC(電磁相容性)則確保板子不會發射或接收雜訊。符合 EMC 的設計不得干擾其他設備。實務上需要完整接地平面,並仔細放置時脈與類比電路。 訊號 + 電源 + 安全 + EMC — 四大支柱 高速數位路徑需要受控阻抗與不中斷的回流路徑。電源軌需寬銅箔與充足去耦,避免電壓跌落。安全規則要求高壓網路具足夠沿面距離與隔離。EMC 考量則確保板子輻射最小並能抗干擾。例如,設計師常將時脈與高頻訊號走在內層,上下夾著接地平面以抑制 EMI。同樣地,為了電源完整性,四處放置旁路電容來馴服電源雜訊。 在畫第一條線之前就定義電氣規則 鋪銅前,先在設計工具中設定電氣規則:指定網路類別、間隙規則、電流限制與阻抗目標。 從電路圖開始:依功能(如電源、MCU、RF)分群,方便閱讀。為每條網路取描述性名稱,不要只叫 VCC,改用 +5V_MICRO 或 +12V_ANALOG 區分關鍵軌。接著立即執行電氣規則檢查......
Jan 03, 2026
設計工具與最佳實務
PCB 藝術:令人驚豔的設計與 DIY 製作教學
通常情況下,PCB 的設計是為了在由佈線組成的小型板材上複製複雜的電路,其核心目的是連接不同的電子零件。然而,談到印刷電路板的美學與功能性時,現在也存在各種不同的應用,例如彩色 PCB 和 PCB 名片。PCB 藝術的興起並非偶然,隨著 JLCPCB 的引入,這類藝術品的製作變得更加容易。這吸引了一個熱愛展現創意與 RGB 燈效的社群;那些希望作品既具備功能性又具備收藏價值的工程師,開始採用 PCB 藝術設計。PCB 藝術與彩色 PCB 已將電路板從單純的功能組件轉變為視覺設計。透過 JLCPCB 等服務,設計師可以利用銅層、防焊層開窗和文字層來創作 PCB 藝術。 社群熱潮與爆紅現象 一塊擁有彩色防焊漆和不同顏色文字層的電路板,只需一則推文就能從原型變成網路爆紅話題。以 Arduino Mega 的圖片為例,看看它的視覺效果有多麼迷人。社群對 PCB 藝術概念的著迷主要有三個原因: 易於分享:視覺設計非常適合社交媒體與硬體作品展示。 門檻低:如果你已經熟悉 KiCad 或 Eagle,創作藝術主要取決於設計決策,而非額外的技術門檻。 工廠支援:快速打樣工廠提供了多樣化的顏色選擇。 如果你想獲得關......
Jan 02, 2026
高速與射頻設計
PCB 阻抗控制:確保高頻電路中的訊號完整性
阻抗是指當交流電施加到電路時電路所產生的反抗。它是電路在高頻時電容和感應的組合。阻抗以歐姆為單位進行測量,類似於電阻。如果阻抗不同,將會產生反射和衰減,導致訊號品質下降。 對於高頻類比或數位電路,保護在 PCB 上傳播的訊號免受損害是至關重要的。事實上,超過 100 MHz 的訊號受到微帶線特性阻抗的影響,如果沒有適當考慮,可能會導致難以分析的意外錯誤。幸運的是,阻抗控制允許設計者和 PCB 製造商管理這一現象。 什麼是阻抗控制和訊號匹配 阻抗控制是指將 PCB 微帶線尺寸和位置與基板材料的特性相匹配,以保持訊號在傳輸過程中無雜訊且無衰減。因此,印刷電路板(PCB)微帶線不再能夠被視為簡單的點對點連接。微帶線需要被視為傳輸線,阻抗匹配變成必要,以減少或消除對訊號完整性的影響。通過遵循良好的設計實踐和方法,可以避免或緩解許多潛在的訊號完整性問題。 因此,我們將討論阻抗控制的重要性、訊號完整性問題的原因以及避免它們的方法。 決定傳輸線阻抗的因素: 通常,微帶線特性阻抗在 25 至 125 歐姆之間,取決於以下因素: ● 介電常數的實部:介電厚度與特性阻抗成正比。介電越厚,特性阻抗越高。 ● 損耗正切值......
Dec 25, 2025
高速與射頻設計
解決高頻 PCB 設計中的佈線與疊層難題
高頻 PCB 的設計呈現獨特的挑戰,特別是在佈線和疊層結構配置方面。適當的規劃和執行對於確保訊號完整性和最佳效能至關重要。以下,我們探討常見的問題和應對策略。 訊號完整性主要涉及阻抗匹配。影響阻抗匹配的因素包括訊號源架構、輸出阻抗、微帶線特性阻抗、負載特性和拓樸結構。解決方案涉及終止和調整微帶線拓樸。高速設計更容易受到電磁干擾/電磁相容(EMI/EMC)影響,請參閱如何透過更好的佈局設計來改進您 PCB 的 EMI-EMC 效能。 高頻 PCB 中的佈線挑戰: 高頻電路對電磁干擾(EMI)和串音高度敏感,因此精確的佈線至關重要。不當的佈線可能導致訊號衰減、雜訊增加和功能問題。以下是一些解決方案: • 阻抗控制:透過使用基於 PCB 材料和訊號頻率的適當微帶線寬度和間距,保持一致的微帶線特性阻抗。 • 最小化串音:將高速訊號微帶線保持分開,並使用差分對來降低雜訊。 • 避免訊號反射:為差分對匹配微帶線長度,並確保適當的終止。 • 減少過孔使用:限制過孔數量以防止訊號完整性損失和不必要的延遲。 高速訊號的手動佈線對比自動佈線 大多數進階 PCB 佈線軟體包括具有可配置限制的自動路由器,用於控制佈線方法......
Dec 25, 2025
訊號與電源完整性
深入了解高速 PCB 設計中的阻抗匹配
隨著科技進步與積體電路應用日益廣泛,電子訊號傳輸的頻率與速度不斷提升,這使得 PCB 導體提供高性能傳輸線變得至關重要。這些傳輸線負責將訊號從源端準確且完整地傳遞到接收端。這項要求強調了阻抗匹配的需求。 電抗,通常表示為 Z並以歐姆 (Ω)為單位,是指交流電路中電阻、電感和電容的綜合效應。特定電路的阻抗並非恆定值;其數值由交流頻率、電阻 (R)、電感 (L) 和電容 (C) 共同決定,因此會隨頻率變化。 什麼是阻抗匹配? 阻抗匹配是確保訊號源或傳輸線與其負載之間相容性的一種方式。它可以分為低頻匹配與高頻匹配。在低頻電路中,波長相對於傳輸線較長,反射可以忽略不計。然而,在高頻電路中,由於波長較短且與傳輸線長度相當,疊加在原始訊號上的反射訊號會改變其形狀並影響訊號品質。 如上圖所示,訊號從源端 A 發出,經過中間傳輸線,進入接收端 B。在傳輸過程中,電路中的寄生電阻、電容和電感會阻礙高速訊號傳輸。當訊號在這些元件之間傳播並遇到不一致的阻抗時,可能會導致訊號反射,進而產生訊號失真。 阻抗匹配能有效減少或消除高頻訊號反射。常見的阻抗線可分為四種類型(如微帶線、帶狀線等)。 阻抗設計考量因素 (1) 阻抗控......
Dec 25, 2025
設計基礎與原理圖
高頻設計中的 S 參數是什麼?
S 參數是高頻設計中用於評估電路的主要工具之一。在射頻(RF)與微波領域,訊號頻率變得極高,以至於傳統銅線無法有效傳輸訊號,且資訊丟失的可能性大幅增加。在此情況下,我們無法單純透過電壓或電流來量測訊號,但藉由特定的參數,我們可以記錄系統行為,進而應用「散射參數」(Scattering Parameter)或稱為 S 參數的計算。S 參數看起來可能像是令人生畏的複數,但它們僅僅是描述射頻訊號在網路埠(Port)表現的一種方式。它基於雙埠網路,判定有多少功率被反射、傳輸或吸收。 1. 為什麼我們需要 S 參數? 在低頻時,由於電壓與電流定義明確,我們可以輕鬆使用歐姆定律與克希荷夫定律。為了定義系統屬性,我們會使用 Z、Y、H 和 G 參數。但在高頻(幾百 MHz 以上)時: 電線表現得如同具有分佈電感與電容的傳輸線。電壓與電流會沿著該傳輸線變化。寄生效應與輻射效應會大幅增加,且變得至關重要。在不干擾電路的情況下直接量測電流非常困難。因此,S 參數不使用電壓與電流,而是使用行進波(入射波與反射波)來描述網路的行為。 2. S 參數的物理意義 想像你有一個具有輸入與輸出埠的元件(例如:放大器、濾波器或天線......
Dec 25, 2025
設計基礎與原理圖
使用 FR-4 基材的 PCB 設計指引
在設計電路板(PCB)時,基板材質的考量至關重要。這是因為如果沒有合適的 PCB 材料,就無法製造出印刷電路板。在開發和生產電路板時,基板材料必須與銅層、文字面(絲印)和表面處理一樣被賦予高度重視。一般而言,PCB 基板必須使用非導電材料,如陶瓷、Marlon、FR4 等。材料的選擇取決於其預期用途,如果某些核心參數或材料相關參數選擇錯誤,電路可能會出現異常行為。今天我們將在本文中瞭解 FR4 適用於哪些應用,並為您提供相關的 FR4 PCB 設計建議。 何謂 FR4? FR4 代表「阻燃 4 級」(Flame Retardant 4),是 PCB 製造中所使用的一種材料等級名稱。它主要由編織的玻璃纖維與環氧樹脂密封組成,具有優異的電絕緣性和機械強度。FR4 中的「4」使其與早期的阻燃材料有所區別,由於其性能優越,現已成為應用最廣泛的材料。FR4 誕生於 20 世紀中葉,當時纖維強化材料和合成樹脂正處於生產發展期。 如前所述,「FR」標誌表示該材料具有阻燃性,因此適用於許多嚴苛的用途。該材料的介電常數(Dk)在 4.2 到 4.8 之間(視頻率而定),在 1 MHz 下的損耗因數(Df)約為 0.......
Dec 24, 2025
訊號與電源完整性
理解 PCB 設計中的 DC 5V 輸入:關鍵考量因素
DC 5V 輸入是 PCB 設計的關鍵面向,能確保電子專案的電壓調節與相容性。本文將探討 DC 5V 輸入的重要性、影響其需求的因素、具備 DC 5V 輸入相容性的 PCB 設計最佳實務、測試與驗證技術、實際應用,甚至如何在 PCB 上製作 5V 電源供應器。透過理解 DC 5V 輸入的重要性,工程師能夠建立穩固可靠的 PCB 設計。 I. 什麼是 DC 5V 輸入? DC 5V 輸入指的是 5 伏特的直流電源供應電壓,廣泛應用於電子專案和裝置中,例如基於微控制器的系統(如 Arduino 和 Raspberry Pi)、感測器應用(例如溫度偵測器、運動偵測器)以及 LED 照明應用。 這些專案和裝置依賴穩定且經過調節的 5V 輸入來為其元件供電,並確保最佳效能和可靠性。適當的電壓調節對於維持這些電子系統的功能性和準確運作至關重要。 II. 影響 DC 5V 輸入需求的因素 元件的電壓規格: 電子專案中的各種元件,例如微控制器、感測器和積體電路,都有特定的電壓要求。在設計 PCB 時,設計人員必須將這些規格納入考量,以保證最佳功能。 轉換與調節技術: 不同的元件可能需要不同的電壓水平,因此需要使用......
Oct 30, 2025
訊號與電源完整性
理解PCB設計中的類比與數位接地
在進行印刷電路板(PCB)設計時,正確的接地對於確保訊號完整性、降低雜訊和維持可靠性能至關重要。PCB佈局中常用的兩種接地層是類比接地和數位接地。本文將探討類比接地和數位接地的區別、它們在PCB設計中的重要性以及實施的最佳實踐。 1. 類比接地 vs. 數位接地 類比接地和數位接地在PCB設計中具有不同的用途,通常會分開以防止類比和數位訊號之間的干擾。 類比接地:類比接地專用於處理連續、變化且低速訊號的類比元件和電路。類比接地對於維持訊號保真度、降低雜訊和保持類比量測的準確性至關重要。類比接地通常與數位接地分開,以防止數位(高速)雜訊污染和影響類比訊號。 數位接地:數位接地專用於處理二進位、開關訊號的數位元件和電路。數位接地對於為數位訊號提供參考點、管理開關雜訊以及防止數位電路中的接地迴路至關重要。與類比接地類似,數位接地通常與類比接地分開,以最大限度地減少類比和數位訊號之間的干擾。 2. 接地層佈局 在PCB設計中,類比和數位接地層通常以銅箔層的形式實現在PCB基板上。 這些接地層為回流電流提供低阻抗路徑,並作為訊號傳播的參考平面。 ● 分離:類比和數位接地層應在PCB佈局上實體分離,以最大限度......
Oct 23, 2025
設計基礎與原理圖
電路符號:理解電氣與電子圖表的關鍵
電路符號在電氣和電子圖表中至關重要,它以標準化和簡化的方式表示複雜的電路和元件。這些符號對於工程師、電工和技術人員在沒有文件說明的情況下理解電路功能至關重要。這些符號的全球認可確保了跨語言和地區的一致解讀,有助於教育與培訓。 電路圖由開關、電容器、電阻器、電池等各種元件組成,並透過網路或走線連接。每個元件都有具有特定特性的獨特符號。理解元件操作對於有效的電路設計和分析至關重要。了解電阻器、電容器和電晶體的屬性使工程師能夠預測元件互動、達成預期結果並進行故障排除。 電路符號如何構成電路圖? 電子電路符號是簡潔的繪圖或象形圖,用於描繪電路示意圖中的各種元件。在此類圖表中,電氣元件通常具有兩個或多個端子用於連接元件。基本的電氣和電子符號包括接地電極、電池和電阻器。這些符號有助於表示即使是最複雜的電路。有了這些基本符號,任何人都可以畫出電氣圖。例如,一個基本電路由電池、開關和燈泡以閉環串聯組成。 儘管同一個電路可以以多種格式呈現,但視覺表示更為直觀。然而,隨著元件數量的增加,視覺複雜度也會隨之提高。當開始一個涉及構建電路或設計印刷電路板的專案時,理解電子符號變得至關重要。示意圖佈局是印刷電路板設計的第一步......
Oct 23, 2025
高速與射頻設計
更好的 EMC 標準設計指南
EMC衡量的是設備在其共用操作環境中按預期運作的能力,同時不影響同一環境中其他設備如預期運作的能力。評估設備在暴露於電磁能量時的反應是 EMC 測試的一部分,稱為抗擾度(或敏感度)測試。測量設備內部電氣系統產生的 EMI 量(稱為輻射測試)是 EMC 測試的另一部分。 EMC 的兩個面向在任何系統中都是重要的設計和工程考量。未能正確預測設備的 EMC 性能可能會帶來許多負面後果,包括防護風險、產品故障和資料遺失。因此,各種 EMC 和 EMI 測試設備應運而生,旨在幫助工程師更清楚地了解設備在實際條件下的運作。 EMC 的重要性:確保設備在運作時不受其他設備的干擾,且本身不會造成乾擾。 不斷增長的需求:隨著設備的複雜性和互連性不斷增加,EMC 對於合規性和功能性至關重要。 1.什麼是EMC? EMC 代表電磁相容性 (Electromagnetic Compatibility)。市場上銷售的所有電子設備/機器都必須符合 EMC 標準,這意味著它必須符合產品預期用途的 EMC 法規和標準。哪些 EMC 法規和標準適用於哪些產品,由產品銷售的國家/地區(例如歐盟或美國等)定義。 符合 EMC 規範的產......
Jul 04, 2025
高速與射頻設計
6層PCB堆疊與建造指南
印刷電路板 (PCB) 是現代電子產品的支柱,為連接和支撐各種電子元件提供必要的基礎架構。隨著電子設備變得越來越複雜和緊湊,對多層 PCB 的需求也日益增長。其中,六層PCB是許多應用的熱門選擇。本文將深入探討六層 PCB 堆疊的具體細節、其應用、最佳配置以及選擇最佳製造商的指南。 為什麼要使用 6 層 PCB? 增強的功能: 六層 PCB 的主要優勢在於它能夠容納更複雜的電路。透過增加層數,設計人員可以添加更多佈線路徑,從而實現更高的元件密度和更佳的效能。這對於需要在有限空間內實現複雜設計的現代設備至關重要。 提高訊號完整性: 高速電路特別容易受到串擾和電磁幹擾 (EMI) 等訊號完整性問題的影響。 6 層 PCB 為專用接地層和電源層提供了額外的層,這有助於透過提供穩定的參考平面並降低雜訊來保持訊號完整性。 增強型配電: 六層 PCB 中的額外層可實現更佳的電力分配。這在具有多電壓等級和高電流需求的電路中尤其重要,因為它有助於降低電壓降並確保向所有組件持續供電。 更好的散熱: 熱量管理是 PCB 設計的關鍵方面。六層 PCB 中的附加層可提供更大的表面積和散熱路徑,從而提高散熱效果,從而增強電......
Jun 10, 2025
設計工具與最佳實務
電子電路解算器:簡化電路分析,讓每個人都能輕鬆上手
在電子領域,最具挑戰性的任務之一就是求解複雜的電路。無論您是正在完成作業的學生、進行 DIY 專案的愛好者,還是設計先進系統的工程師,擁有合適的電子電路求解工具都能節省時間、減少錯誤並提高效率。這正是電子電路解算器的作用所在。這些工具旨在使電路分析更簡單、更快速、更準確。 在本文中,我們將介紹電子電路解算器是什麼、它的特點、它是如何運作的,以及為什麼它會改變任何從事電子電路工作的人的遊戲規則。 1.什麼是電子電路解算器? 電路求解器是一些程式或網站,可以幫助你了解電路的工作原理以及它們應該如何運作。這些工具會自動完成工作,因此你無需手動求解方程式並計算電壓、電流和功率。 它們的工作原理是模擬你的電路,找到電阻器、電容器和電感器等零件,然後找出你想要的因素,例如: ⦁ 部件之間的電壓下降。 ⦁ 電流流經每個分支。 ⦁ 電阻器斷電。 一些更複雜的解算器甚至可以讓您在建造真實電路之前查看訊號、嘗試不同的佈局並改進您的設計。 2. 電子電路解算器如何運作? 步驟很簡單: ⦁輸入電路設計:首先,將您的電路設計輸入到求解器中。您可以在程式中手動繪製電路圖,也可以上傳其他人已經繪製的原理圖。 ⦁ 定義電路參數:......
Jul 23, 2025
設計基礎與原理圖
PCB 設計指引 101:佈局與佈線
歡迎閱讀我們PCB設計指南系列的第二篇文章。在本文中,我們將探討實現最佳PCB設計效能和功能的關鍵PCB設計指南。無論您是電子愛好者、業餘愛好者、工程師、學生還是該領域的專業人士,了解這些指南都能幫助您創建高品質的PCB設計。在本文中,我們將探討設計印刷電路板 (PCB) 的基本原則和最佳實務。這些指南有助於確保PCB功能正常、易於製造並符合所需的性能標準。讓我們與JLCPCB一起深入了解細節! 1. 元件放置: PCB設計中的製作部分: PCB 上的數位部分和類比部分應保持分離,以避免訊號相互幹擾。將相關元件組合在一起不僅可以簡化佈線,還能透過最大限度地降低不相關電路之間串擾的風險來增強訊號完整性。例如,在類比放大器設計中,電源部分應遠離主放大 IC,以避免訊號中出現雜訊。 製作耐熱設計: 諸如電源調節器或大電流設備之類的發熱組件應放置在氣流充足的區域或靠近PCB邊緣,以促進有效散熱。組件之間適當的間距對於便於組裝和維護至關重要,同時也能確保自動焊接流程能夠順利進行,而不會造成橋接或其他缺陷。 高速設計考量: 高速組件(例如處理器和記憶體模組)應靠近其相關連接器放置,以最大程度地縮短走線長度,有......
Jul 17, 2025
設計基礎與原理圖
如何閱讀和創建 PCB 原理圖
印刷電路板 (PCB) 設計是現代電子產品的支柱,而原理圖也是 PCB 設計的核心。電子設計很大程度上依賴原理圖的繪製,因為原理圖展示如何組裝電路和系統。原理圖透過電纜展示了電子系統中各個組件之間的連接。這有助於工程師對整個設計流程進行規劃和展望。無論您是在設計基本電路還是複雜的電氣系統,繪製原理圖都可以確保一切正確無誤,有助於故障排除,並促進製造商和工程師之間的溝通。 當我們必須簡化設計時,我們唯一能想到的就是 EasyEDA,這是一款功能強大且用戶友好的線上 PCB 設計工具。它簡化了閱讀和創建原理圖的過程。在本指南中,我們將逐步指導您在 EasyEDA 中理解和建立 PCB 原理圖。本文將介紹建立原理圖的必要性、需要執行的關鍵操作、可以使用的工具以及確保設計正常運作的最佳方法。 什麼是 PCB 原理圖? PCB原理圖是電子電路的圖形表示。它使用標準化符號來表示電阻器、電容器和積體電路等元件,並顯示這些元件如何透過導線或網路互連。原理圖可作為實體 PCB 佈局的藍圖。 與真正的接線圖不同,原理圖並非物理地描繪元件的位置,而是揭示它們在電路內部的邏輯連接和互連方式。 標準符號使原理圖能夠簡化最複......
Jun 09, 2025
- 1
- 2
- 3
- 4