This website requires JavaScript.


假期通知:JLCPCB 工廠將於 2026 年 1 月 1 日暫停營運。DHL/FedEx/EuroPacket 服務將於 1 月 1 日與 2 日暫停。訂單仍可正常下單,交期將相應調整。


優惠券 應用程式下載
寄往
部落格

深入了解高速 PCB 設計中的阻抗匹配

最初發布於 Dec 25, 2025, 更新於 Dec 25, 2025

1 分鐘

隨著科技進步與積體電路應用日益廣泛,電子訊號傳輸的頻率與速度不斷提升,這使得 PCB 導體提供高性能傳輸線變得至關重要。這些傳輸線負責將訊號從源端準確且完整地傳遞到接收端。這項要求強調了阻抗匹配的需求。

電抗,通常表示為 Z並以歐姆 (Ω)為單位,是指交流電路中電阻、電感和電容的綜合效應。特定電路的阻抗並非恆定值;其數值由交流頻率、電阻 (R)、電感 (L) 和電容 (C) 共同決定,因此會隨頻率變化。


什麼是阻抗匹配?

阻抗匹配是確保訊號源或傳輸線與其負載之間相容性的一種方式。它可以分為低頻匹配與高頻匹配。在低頻電路中,波長相對於傳輸線較長,反射可以忽略不計。然而,在高頻電路中,由於波長較短且與傳輸線長度相當,疊加在原始訊號上的反射訊號會改變其形狀並影響訊號品質。

signal reflections



如上圖所示,訊號從源端 A 發出,經過中間傳輸線,進入接收端 B。在傳輸過程中,電路中的寄生電阻、電容和電感會阻礙高速訊號傳輸。當訊號在這些元件之間傳播並遇到不一致的阻抗時,可能會導致訊號反射,進而產生訊號失真。

阻抗匹配能有效減少或消除高頻訊號反射。常見的阻抗線可分為四種類型(如微帶線、帶狀線等)。

Commonly used impedance lines



阻抗設計考量因素

(1) 阻抗控制線可以設計在外層(上述四種類型皆為外層阻抗)或內層。

(2) 阻抗值的大小取決於產品設計與晶片類型。通常,元件製造商會為訊號源和接收端預設阻抗值(例如:SDIO 單端 50 ohms,USB 差動 90 ohms)。

(3) 阻抗控制線必須有參考層,通常使用相鄰的地層或電源層作為參考(例如:頂層阻抗的參考層通常是第二層)。

(4) 參考層的目的是為訊號提供回流路徑並起到電磁屏蔽作用。因此,參考層必須鋪設實心銅(Solid copper)。

(5) 影響線路阻抗的因素:

線寬:阻抗與線寬成反比;線越窄,阻抗越高。

介電常數:阻抗與介電常數成反比;介電常數越低,阻抗越高。

防焊厚度:阻抗與防焊厚度成反比;防焊越厚,阻抗越低。

銅厚:阻抗與表面銅厚成反比;銅越薄,阻抗越高。

線間距:阻抗與阻抗線之間的距離成正比;間距越大,阻抗越高。

介電層厚度:阻抗與介電層厚度成正比;介電層越厚,阻抗越高。


(6) 阻抗線計算方法:建議使用 JLCPCB 的「阻抗計算器」。或者,您可以下載阻抗計算軟體(如 SI9000),並結合我們的疊層參數進行計算。

(7) 關於「線寬與間距」的簡要說明:線寬是指線路的水平寬度,即從線路的一側邊緣到另一側邊緣的距離。線間距是指一條線路的邊緣到另一條線路(或周圍銅面)邊緣的距離。

line width and spacing

阻抗控制訂單說明

對於需要阻抗控制的訂單,必須以表格或圖表的形式提供您的阻抗要求,並隨附壓縮的 PCB 檔案。

impedance requirements



開啟 JLCPCB 的「阻抗計算器」並輸入阻抗值,同時選擇相應的層疊結構(Stack-up)和其他相關參數(如板厚)。在您的工程資料中設計相應的線寬與間距。

Impedance Calculator

重要提醒:目前我們僅能確保線寬與間距在 +/-20% 的公差範圍內。

結論

阻抗匹配是高速 PCB 設計中的關鍵環節,能確保最佳的訊號傳輸並維持訊號完整性。透過仔細考量阻抗值、線寬、間距、介電特性和參考層,設計師可以有效減少訊號反射與失真。實施阻抗控制線並利用 JLCPCB 阻抗計算器等工具,可以簡化設計流程並協助達成理想的阻抗值。藉由正確的阻抗匹配技術,設計師可以提升高速 PCB 的效能與可靠度,實現現代電子系統中電子訊號的無縫傳輸。


持續學習