先進印刷電路板技術、材料與性能
學習進階PCB技術,包括HDI、RF、熱管理,以及用於滿足複雜工程需求的次世代材料。
精選貼文
先進封裝與整合
何謂 PCB 設計中的 Chip-on-Board (COB)?優勢與製造流程全方位指南
在本教學中,我們將詳細介紹「板上晶片封裝」(Chip On Board,簡稱 COB)的概念。如果你曾思考過廉價、耐用且緊湊的電子設備是如何製造的,答案就是 COB 技術。從晶片製造到原型開發及開發板製作,COB 都是一套完整的解決方案。 今天我們將深入探討 COB,並為電子產品小型化的未來提供具商業價值的見解。完成後的半導體晶圓會被切割成裸晶(Die),每個裸晶接著被物理性鍵合至 PCB 上。目前共有三種不同的方法可用於連接積體電路(或其他半導體元件)的接墊與 PCB 的導電佈線。隨著電子產業的成長,封裝技術也在進化。我們將學習這種創新的封裝技術如何徹底改變電子零件的整合方式。讓我們開始深入研究 COB 技術的細節! 1. 什麼是 Chip on Board (COB) PCB? 板上晶片封裝(COB)是一種用於 PCB 組裝電子零件的封裝方法。在這種方法中,電路板上配置的不是獨立的封裝元件,而是將裸露的積體電路(裸晶)直接連接在電路板表面。使用此技術可減少傳統陶瓷或塑料封裝的使用,進而縮小電子裝置的尺寸與重量。簡單來說,COB 是一種將積體電路直接附著(打線鍵合)於 PCB 並用環氧樹脂膠塊覆......
Jan 02, 2026
最新貼文
軟性印刷電路板
靈活與耐用的結合:深入了解剛柔結合 PCB 技術
在快速演進的電子領域中,對更小、更可靠且更多功能的裝置需求持續增長。為了滿足這些需求,工程師與設計師越來越常採用剛撓結合板(Rigid-Flex PCB)。這類電路板將剛性與撓性基材結合成單一互連結構,使複雜設計得以在特定區域彎曲或撓曲,同時在其他區域保持剛性。為了製造剛撓結合板,IPC 提供了建議與最佳實務。從技術層面來說,剛撓設計會將兩層或更多導電層與撓性或剛性絕緣層交替結合。 剛性區域通常用於安裝元件並提供結構支撐,而撓性區域則允許彎折,使設計更緊湊、更精細。大多數剛撓板由多層撓性電路基材組成,依應用設計需求,在外部或內部與一或多片剛性板結合。在本完整指南中,我們將探討剛撓結合板的基礎、優點、設計考量與典型應用。 剛撓設計: 剛撓結合板的設計較為複雜,因為這些板子以 3D 方式設計,可折疊或扭轉成產品所需的形狀。這種 3D 撓性提升了空間效率,使其成為醫療設備等對體積與重量敏感的應用理想選擇。 剛撓結合板通常比其他板子更薄,是任何需要輕薄封裝產品的絕佳選擇。憑藉薄銅層與無膠基材,它為您的電路設計需求提供了最小、最薄、最輕的解決方案。 剛撓結合板技術的演進: PCB 技術已大幅演進,持續的進步......
Jan 06, 2026
軟性印刷電路板
PCB 加強板:柔性電路的必要需求
印刷電路板加強板在為 PCB 提供機械支撐方面扮演重要角色。它們對柔性電路板特別有幫助,顧名思義,柔性板具有可撓性,需要在某些區域增加剛性。當元件放置在可撓區域且這些元件的重量對柔性材料造成壓力時,就特別需要使用加強板。這些加強板為柔性部分與剛性板之間提供了堅固的連接,這種剛性使焊接互連或元件變得更容易,並完成通過柔性部分的電路走線。 它們也可用於需要創建剛性印刷電路板表面以放置 SMT 焊盤元件的情況。此外,需要多次插拔的連接器也需要加強板,以減少焊盤的應力。讓我們更詳細地了解加強板的用途。柔性 PCB 在以下情況需要加強板: 柔性部分需要連接到另一塊板或電源。 需要將元件安裝到 PCB 的柔性材料上。 安裝的元件會對柔性 PCB 造成過大重量。 需要多次插拔的連接器可能會對連接焊盤造成應力。 柔性 PCB 設計中加強板的作用 柔性印刷電路(FPC)中的加強板是一種剛性層,通常由聚醯亞胺或 FR4 等材料製成,添加到柔性 PCB 的特定區域。它提供機械支撐和加固,防止連接器區域或安裝點等敏感區域彎曲或變形。加強板可提高耐用性,增強高應力區的可靠性,並有助於在關鍵部分保持 FPC 的整體外形。 P......
Jan 06, 2026
軟性印刷電路板
柔性 PCB 設計實用技巧 - JLCPCB
柔性印刷電路板,或稱 Flex PCB,是一種薄而輕的印刷電路板,可彎曲、折疊和扭曲成任何形狀或尺寸,而不會損壞板上的電氣連接。Flex PCB 在航太、汽車、醫療設備和消費電子等多個產業中越來越受歡迎。在本文中,我們將討論在進行有效產品開發時,設計柔性 PCB需要考慮的事項。 目前,JLCPCB 提供柔性 PCB 製造特價優惠,每 5 片僅需 $2。新用戶還可獲得高達 $60 的註冊優惠券。只需上傳您的 Gerber 檔案並一鍵下單,即可等待您的柔性 PCB 設計實體化。 設計 Flex PCB 的注意事項 設計 Flex PCB 需要仔細考慮多個因素,例如材料選擇、電路佈局和元件擺放。 製造 Flex PCB 的第一步是設計電路。設計人員使用電腦輔助設計(CAD)軟體建立佈局,指定板上元件、走線、導通孔及其他特徵的位置,包括必須根據製造商要求仔細設定的 PCB 層疊結構。以下是設計 Flex PCB 時的一些建議: 確定柔性 PCB 的類型:柔性 PCB 有多種類型,包括單面、雙面和多層柔性 PCB。應根據複雜度、空間限制和柔性需求等因素,選擇適合應用的類型。 最小化層數:柔性 PCB 通常比......
Jan 06, 2026
軟性印刷電路板
柔性 PCB 製造流程與優勢
在當今步調快速且技術先進的世界裡,印刷電路板(PCB)已成為許多電子裝置不可或缺的一部分。然而,隨著對更小、更靈活的電子裝置需求日益增加,傳統的硬質 PCB 已顯得效率不足。此時,柔性印刷電路板(Flex PCB)應運而生,在維持與硬質 PCB 相同功能等級的同時,提供了所需的彈性。 對於新用戶,JLCPCB 還準備了最高 $70 的註冊優惠券,絕不讓高昂的開發成本限制您的創意。 本文將深入探討 Flex PCB 的製造流程,從設計到量產,並介紹用於生產這些創新電路板的各種技術。 延伸閱讀: Flex PCB 組裝指南:流程、挑戰與解決方案 在包含 JLCPCB Flex PCB 製程在內的幾種 PCB 製造中,下列步驟是達成成功 Flex PCB 的基礎: 柔性電路設計: 第一步是使用電腦輔助設計(CAD)軟體設計柔性 PCB。設計內容包含電路佈局、元件擺位,以及任何針對 PCB 彎折或撓曲的特殊需求。 材料選擇: 下一步是為柔性 PCB 選擇合適的基材。最常見的材料是聚醯亞胺(PI)與聚酯(PET)薄膜,這些材料具備良好的電氣絕緣性、耐高溫性與柔韌性。 導電材料:用於在 Flex PCB 上建......
Jan 06, 2026
軟性印刷電路板
JLCPCB 柔性 PCB 面板設計指南
JLCPCB 柔性 PCB 面板設計指南 在 JLCPCB 下單軟性 PCB 時,有幾點需要特別注意。FPC 拼板的設計方式與剛性 PCB 拼板不同,後者使用 mouse bites 或 V-cut。 JLCPCB 軟板拼板要求: 板間間距 2 mm,若使用金屬加強板建議 3 mm 四邊各留 5 mm 板邊,整圈需鋪銅,僅在基準點周圍留 1 mm 淨空、定位孔周圍留 0.5 mm 淨空 SMT 基準點直徑 1 mm,定位孔直徑 2 mm;基準點中心距板邊 3.85 mm。每個角落各放一組基準點與定位孔,並將其中一角的基準點與定位孔偏移至少 5 mm 以標示方向 連接橋寬度 0.7–1.0 mm 整體拼板尺寸需介於 234 × 490 mm 與 70 × 70 mm 之間 若拼板需進行 SMT 貼裝,請在每片 FPC 單元旁再加一個基準點;板廠會將不良單元的基準點塗黑,以便貼裝時跳過 含金屬加強板之 FPC:雷射切割需預留 0.8 mm 槽寬;板間距至少 3 mm。 為了讓您的 軟性 PCB 設計發揮最佳效能,選用優質材料至關重要。JLCPCB 與全球頂尖原料供應商合作,提供高品質、正廠 A 級板材......
Jan 06, 2026
HDI板
如何優化 HDI PCB 板的層疊結構
隨著 HDI 疊構 這項多層 PCB 設計尖端技術的推出,PCB 設計師在未來幾年將能夠打造更複雜、更小巧的電路板。設計 PCB 疊構的第一步,就是精準確立專案需求。首先要決定所需的層數,這取決於電路的複雜度、訊號密度、電源分配需求,以及設計是否包含 RF 或高速訊號。 HDI PCB 製造始於 1980 年代末期。1984 年 PCB 的連續堆疊製程標誌著首批 HDI 生產的開始。此後,製造商與設計師不斷尋求在更小的空間內容納更多元件的方法。HDI 板依據 IPC-2315 與 IPC-2226 標準進行設計與生產。本文將涵蓋:何謂 PCB 疊構、其重要性、如何選擇疊構、常見疊構配置,以及 HDI PCB 的阻抗控制考量。 1. 什麼是 PCB 疊構? 疊構指的是 PCB 上銅層與絕緣層的排列方式,決定了電源層與訊號走線在各層間的分布,直接影響散熱與電氣性能。為達成高互連密度,HDI 設計的疊構常採用多層精確配置。然而,某些問題仍待解答:如何挑選層數?有無公式?該用四層還是六層?讀完本文,這些疑問將迎刃而解。雖無固定公式,但需遵循基本設計原則,否則可能出現: ⦁ 阻抗不匹配 ⦁ 熱滯後與 EMI......
Jan 05, 2026
先進封裝與整合
設計鍵盤 PCB 的關鍵考量
什麼是鍵盤 PCB? 鍵盤 PCB 是一種承載鍵盤運作所需電子元件的電路板。它作為連接開關、微控制器及其他元件的基礎,讓使用者能夠輸入指令。鍵盤 PCB 的設計對其性能、可靠性與整體功能有著重大影響。 鍵盤電路板廣泛應用於日常生活中,如遙控器、車窗按鈕及電梯按鈕等產品。它們生產成本低,具備優異的導電性與耐磨性。按鍵表面覆有導電金油或碳油,可防止銅面在空氣中氧化。組裝時,會在按鍵區上方放置一顆金屬彈片(metal dome)。金屬彈片是一種用於觸覺開關的金屬凸起薄片,負責導通或斷開電路。當彈片被壓下時,會連接交叉的鍵盤線路;鬆開時,彈片回彈斷開連接,從而實現訊號傳輸或產品功能執行。 現在我們了解鍵盤的運作方式,接下來討論設計鍵盤時應注意的關鍵要點: 1. 按鍵尺寸與位置 按鍵的尺寸與位置應合理設計,以配合金屬彈片,並考量人體工學與使用便利性。間距過小或過大都會影響使用者體驗與操作準確度。 2. 避免短路 避免在按鍵區附近佈線裸露的銅線,以防金屬彈片受壓時造成短路。 3. 確保良好通風 確保按鍵區周圍有適當的氣流。若無通風,金屬彈片可能無法回彈,類似吸盤效應。 4. 保持按鍵區平整 按鍵區應保持平整。......
Jan 05, 2026
先進封裝與整合
電池 PCB 板:你需要知道的事
在電子世界中,電池 PCB 電路板肩負著重要任務。舉凡智慧型手機、筆記型電腦到電動車等眾多裝置都能見到它的身影。這塊電路板專門用來管理電力、保護電池,並確保裝置正常運作。讓我們深入了解電池 PCB 電路板是什麼,以及它為何如此重要。 1. 什麼是電池用的 PCB 電路板? 電池 PCB 電路板是一種特殊的電路板,用來連接裝置的電池與其他元件。它的主要功能是確保電池將電力正確送達各處,同時防止過充或過熱。若缺少這塊電路板,裝置與電池將無法正常運作。 筆電、手機與電動車等使用可充電電池的裝置,內部都裝有電池 PCB。這塊電路板能讓電池安全且正常地運作,避免裝置出現問題。 2. 電池 PCB 電路板的關鍵功能 電池 PCB 電路板具備多項重要功能,主要如下: ⦁ 分配電力:將電池的電力傳輸至裝置各部位,缺少此功能裝置將無法供電。 ⦁ 保護電池:防止過充與過放,延長電池壽命並確保使用安全。 ⦁ 監控電壓:持續檢測電池電壓,若電壓過高或過低,電路板會立即採取保護措施。 ⦁ 管理熱能:電池使用時會產生熱量,PCB 協助控溫,避免過熱造成損壞或危險。 ⦁ 平衡電芯:多電芯電池組中,PCB 確保各電芯均衡充電,延......
Jan 05, 2026
先進封裝與整合
QFN 封裝終極指南
四方扁平無引腳(QFN)封裝是一種體積小、重量輕且厚度薄的 IC 封裝類型。由於組裝後仍可看到並接觸焊點,因此也被稱為晶片級封裝。其底部設有電極焊墊而非傳統引腳,並配有散熱焊墊,提供優異的熱效能。 QFN 封裝廣泛應用於行動裝置、汽車電子等多種產業。在眾多關鍵選擇中,QFN 始終是熱門方案。這種封裝為何如此受歡迎?您的專案是否也該採用?本指南將為您提供清晰而全面的解析。參閱我們最新的 PCB 製造流程指南。 什麼是 QFN 封裝? QFN 為 Quad Flat No-lead 的縮寫,意即「四方扁平無引腳」。QFN 封裝透過表面黏著技術,將矽晶片(ASIC)連接至印刷電路板(PCB)。顧名思義,這種封裝沒有傳統的引腳,而是在底部邊緣設有裸露焊墊。此結構可提升電氣與熱效能,因而廣受歡迎。 QFN 封裝結構與組成: QFN 為表面黏著技術的無引腳封裝,通常由以下基本元件構成: 導線架:對 IC 性能至關重要,主要作為封裝的支撐結構。 單顆或多顆晶片:即封裝內的矽晶片,透過表面黏著技術固定於電路基板。 焊線:通常由銅或金製成,用於連接導線架與晶片。 塑封材料:包覆並保護內部元件,提供電氣絕緣、防腐蝕功......
Jan 05, 2026
先進封裝與整合
什麼是板上晶片(COB)技術:完整指南
在本教學中,我們將深入了解「板上晶片」(Chip On Board,簡稱 COB)的詳細概念。如果你曾想過更便宜、更耐用且更小巧的電子裝置是如何製造的,答案就是板上晶片技術。板上晶片是一種從晶片製造到原型製作與開發板的解決方案。 今天我們將深入探討 COB,並提供對電子微型化未來的有益見解。完成的半導體晶圓會被切割成晶粒,每顆晶粒再被實體黏合到 PCB 上。我們使用三種不同的方法來連接積體電路(或其他半導體裝置)的端點焊墊與印刷電路板的導電走線。隨著電子技術的發展,封裝技術也不斷演進。我們將了解這項創新的封裝技術如何革新電子元件的整合方式。現在就讓我們開始,回顧板上晶片技術的細節吧! 什麼是板上晶片 PCB? 板上晶片(COB)印刷電路板是一種將電子元件組裝於 PCB 板上的封裝方法。在這種方法中,板上不會配置個別元件,而是將裸晶積體電路直接連接到板子表面。這項技術減少了舊式封裝技術(如陶瓷或塑膠封裝)的使用,使電子裝置與專案體積更小、重量更輕。板上晶片(COB)是一種電路板製造方法,積體電路直接(以打線方式)黏著在印刷電路板上,並以一團環氧樹脂覆蓋。 COB 省去了個別半導體裝置的封裝,將兩層電......
Jan 05, 2026
HDI板
高密度互連(HDI):革新現代電子產品的 PCB 設計
在先進電子領域,高密度互連(HDI)技術已成為改變遊戲規則的關鍵。隨著裝置變得更小、更快、更複雜,傳統印刷電路板(PCB)往往難以應對這些需求。這正是 HDI PCB 的用武之地。本文將介紹 HDI 是什麼、為何它至關重要,以及它如何塑造現代電子的未來。 1. 什麼是 High-Density Interconnect(HDI)? 「HDI」印刷電路板(PCB)是一種單位面積線路密度高於普通 PCB 的類型。HDI 板透過更小的導孔、更細的線路和更小的元件實現這一目標。由於這些板專為複雜且小巧的電子產品設計,因此成為智慧型手機、平板電腦和穿戴式裝置等現代設備的最佳選擇。 HDI PCB 最重要的特點包括: ⦁ 微導孔:微導孔是 PCB 上極小的孔,用於連接各層。 ⦁ 雷射鑽孔:雷射鑽孔可實現精確且微小的連接。 ⦁ 更薄的層:可在更小的空間內容納更多層次。 ⦁ 高密度元件布局:最大化利用空間擺放元件。 2. 為何 HDI 對現代電子如此重要? 如今電子產品必須在更小的體積內實現更快、功能更豐富,同時保持可靠與高效。HDI 技術透過以下方式解決這些挑戰: ⦁ 緊湊設計:HDI PCB 讓製造商能在更小......
Jan 05, 2026
HDI板
高效 HDI PCB 設計的疊構策略
無論你認為摩爾定律已死還是仍然有效,將更強大的處理能力塞進更小的封裝所帶來的強烈經濟誘因,短期內都不會減弱。HDI 疊構技術的出現——這項多層 PCB 設計的前沿技術,承諾在未來多年內協助 PCB 設計師做出更小巧、更複雜的電路板。在印刷電路板(PCB)設計中,疊構是影響電路板性能、可製造性與可靠性的關鍵要素。對於高密度互連(HDI)PCB 而言,由於其緊湊的設計與複雜的層次結構,疊構策略顯得尤為重要。 HDI PCB 的製造始於 1980 年代末期,首批 HDI 量產於 1984 年,採用循序增層技術。此後,設計師與製造商持續尋求在更小面積內塞進更多元件的方法。HDI 板依照 IPC-2315 與 IPC-2226 標準設計與製造。本文將探討 PCB 疊構是什麼、為何重要、如何選擇疊構、常見的疊構配置,以及在 HDI PCB 中進行阻抗控制的考量。想進一步了解 PCB 設計,請參閱我們關於 PCB 中 Via 的最新文章。 什麼是 PCB 疊構? PCB 疊構指的是銅層與絕緣層在 PCB 中的排列方式,它決定了訊號走線與電源層如何分布於各層,進而影響電氣性能與熱管理。對 HDI 設計而言,疊構通......
Jan 05, 2026
HDI板
使用微盲孔的設計:疊構、可靠性與填孔
你是否曾經好奇,設計師是如何在如此狹小的空間內塞進這麼多功能?這都要歸功於 HDI 設計技術與印刷電路設計中的微孔。高密度互連(HDI)PCB 技術位居現代電子領域的前沿,讓裝置既小巧又強大。這些結構已存在多年,如今在各種需要在單一電路板上實現多種功能的系統中變得越來越普遍。 如果你做過尺寸研究,並確定需要 6 mil 或更細的走線才能把所有元件裝進印刷電路板,本文將探討微孔是什麼、它在 HDI 設計中的重要性,以及它為先進 PCB 製造帶來的優勢。 什麼是微孔? 微孔是在導體-絕緣體-導體多層結構中鑽出的盲孔,用於在電子電路中提供穿過絕緣層的電氣連接。孔徑與深度的最大縱橫比為 1:1,總深度不超過 0.25 mm(從表面量測至目標焊墊或平面)。NCAB 通常將表面與參考焊墊之間的介電厚度定為 60–80 µm。微孔直徑範圍為 80–100 µm,典型縱橫比介於 0.6:1 至 1:1。 與傳統導通孔穿越 PCB 多層不同,微孔採用雷射鑽孔,通常僅連接兩個相鄰層。直徑小於 150 μm 的微孔雷射鑽孔已取代機械鑽孔,約占市場 94%。它們可分為三類: 盲孔(Blind Vias) 埋孔(Burie......
Jan 05, 2026
先進封裝與整合
何謂 PCB 設計中的 Chip-on-Board (COB)?優勢與製造流程全方位指南
在本教學中,我們將詳細介紹「板上晶片封裝」(Chip On Board,簡稱 COB)的概念。如果你曾思考過廉價、耐用且緊湊的電子設備是如何製造的,答案就是 COB 技術。從晶片製造到原型開發及開發板製作,COB 都是一套完整的解決方案。 今天我們將深入探討 COB,並為電子產品小型化的未來提供具商業價值的見解。完成後的半導體晶圓會被切割成裸晶(Die),每個裸晶接著被物理性鍵合至 PCB 上。目前共有三種不同的方法可用於連接積體電路(或其他半導體元件)的接墊與 PCB 的導電佈線。隨著電子產業的成長,封裝技術也在進化。我們將學習這種創新的封裝技術如何徹底改變電子零件的整合方式。讓我們開始深入研究 COB 技術的細節! 1. 什麼是 Chip on Board (COB) PCB? 板上晶片封裝(COB)是一種用於 PCB 組裝電子零件的封裝方法。在這種方法中,電路板上配置的不是獨立的封裝元件,而是將裸露的積體電路(裸晶)直接連接在電路板表面。使用此技術可減少傳統陶瓷或塑料封裝的使用,進而縮小電子裝置的尺寸與重量。簡單來說,COB 是一種將積體電路直接附著(打線鍵合)於 PCB 並用環氧樹脂膠塊覆......
Jan 02, 2026
HDI板
HDI PCB 與標準 PCB:關鍵差異與效益
印刷電路板(PCB)是任何電子系統的核心,為其他電子零件提供機械支撐與電氣連接。從我們駕駛的汽車、使用的電子裝置外殼,到內部的電路系統,甚至是在飛機與火箭中,都能看見日益精進的航太領域 PCB 解決方案。不可否認地,傳統 PCB 電路板數十年來一直是產業標準;然而,市場對產品「輕薄短小」及更高運算速度的需求,促成了高密度互連(HDI)技術的興起。雖然兩者執行的基本功能相同,但在複雜度、製造方法、結構、成本及應用領域上皆有顯著差異。本文將探討它們的差異、潛在優勢、限制及應用場景。 1. 什麼是標準 PCB? 標準 PCB,也稱為傳統 PCB,是電子產品中電路板的首選。它們的設計相對簡單,通常包括層壓在 FR-4 基板上的銅佈線。層數依需求而異,大多數電路板通常在 1 到 8 層之間,單面和多層配置都非常常見。在特定情況下,層數甚至可達 12 層。 這些電路板使用「通孔」(Through-hole vias)來連接不同層,且與複雜的 HDI 設計相比,具有較寬的線寬與間距。由於設計簡單,它們非常適合零件較少且訊號密度較低的電路。 標準 PCB 的主要優點在於生產成本低、交期快,且因製程技術成熟而具有極......
Jan 02, 2026
軟性印刷電路板
揭秘電子產品使用軟板的 5 大優勢
軟板確實正在改變現代電子產品的遊戲規則。它們更輕、更具彈性,並能讓您實現以前根本不可能達到的設計。隨著裝置趨向小型化且功能日益強大的趨勢,軟板提供了一種傳統硬板根本無法企及的獨特解決方案。 在本文中,我將分享在您的下一個電子專案中使用軟板的 5 大關鍵優勢。這不僅僅是關於擁有一個可以彎曲的電路板,更在於這種靈活性如何帶來更高效、更可靠且更具創意的設計。無論您是在重新思考現有產品,還是從零開始一個新專案,了解這些優勢都能讓您在當今競爭激烈的市場中獲得真正的領先地位。 讓我們來探討為什麼軟板正成為任何希望在現代電子世界中保持領先地位的人之必備選擇。 1. 卓越的物理特性 靈活性 軟性電路板的核心優勢在於其優異的彈性與彎曲能力。這項特性使其能夠適應各種複雜的安裝環境,例如邊緣、折疊和褶皺處。與傳統硬板相比,軟板在振動環境中展現出更高的可靠度與耐用性,降低了因振動引起的故障風險。此外,軟板的佈線設計更加精簡,最大限度地減少了對介面連接(如焊點、壓接點和連接器)的需求,進而增強了整個系統的穩定性。 輕薄設計 軟板不僅提供更大的設計自由度,在空間利用和重量控制方面也表現出色。其輕薄設計使裝置能夠實現更高的空間......
Dec 25, 2025
軟性印刷電路板
什麼是軟性印刷電路板?您的可彎曲電路板入門指南
如果您曾好奇您的智慧型手機是如何折疊的、您的智慧型手錶是如何貼合手腕曲線的,或者是醫療設備如何緊密地置入人體內,答案通常就在於一個微小且可彎曲的英雄——「軟性印刷電路板」(Flexible Printed Circuit Board),簡稱「軟板」(Flex PCB)。 不同於您在舊式電子產品中看到的「硬板」表親(那種扁平且堅硬的電路板),軟板可以扭轉、折疊並擠進傳統電路板無法進入的空間。讓我們來解析是什麼讓這些電路板如此特別、它們是如何製造的,以及為什麼它們正在悄悄地徹底改變我們周遭的科技。 軟板 101:無需工程學位也能懂 想像一個像瑜珈墊一樣的電路板,既堅固又具備足夠的靈活性,可以彎曲成各種形狀而不會斷裂。這基本上就是軟板。這些電路板使用薄且易彎曲的材料代替堅硬的玻璃纖維,使它們能夠塞進曲線或狹小的空間。把它們想像成電子界的摺紙大師:它們可以折疊、扭轉並適應任何裝置所需的形狀。 甚至還有一種混合版本稱為「軟硬結合板」(Rigid-Flex),它結合了軟性與硬質的部分。想像一個電路板,一部分是可彎曲的(用於包裹電池),另一部分是固定的(用於承載沉重的元件)。這種組合兼具兩者的優點,您可以在空間......
Dec 25, 2025
軟性印刷電路板
什麼是軟性印刷電路板?材料與製程入門指南
FPCB(軟性印刷電路板) 軟性電路的演進始於 20 世紀初,隨著在聚醯亞胺薄膜(Kapton Polyimide Films, KPI)上使用黃光微影(Photolithography)等技術開發出可彎曲電子產品而展開。幾十年來,這些早期創新為現代軟性印刷電路板(FPCB)時代鋪平了道路,其卓越的靈活性和多功能性徹底改變了電子設計。 定義與結構組成 軟性印刷電路板(FPCB)在電子設計中脫穎而出,原因在於其能夠彎曲並適應各種形狀,與傳統硬質 PCB 相比具有顯著優勢。FPCB 通常由聚醯亞胺或聚酯薄膜等輕質材料組成,能夠實現現代電子產品中不可或缺的複雜設計和緊湊佈局。FPCB 的結構組成涉及多層軟性基板材料,並使用黏合劑壓合在一起。基礎層通常為聚醯亞胺(PI),提供優異的熱穩定性和機械韌性,這對於承受多種環境條件至關重要。導電銅佈線被精確地蝕刻在基板上,形成訊號傳輸所需的電氣路徑。防焊漆或防潮絕緣塗層等保護性覆蓋層被應用於保護這些脆弱的元件免受環境因素和機械應力的影響,確保提供堅固且具備柔性的電子解決方案。 FPCB 的製造製程 FPCB 的製造過程涉及多個步驟,首先是準備軟性基板材料。該材料在......
Dec 25, 2025
軟性印刷電路板
柔性印刷電路板終極指南:類型、設計與應用
軟性印刷電路板(FPC 或 Flex PCB)是一種被設計成具有可撓性的電路板,允許其彎曲、摺疊或扭轉。FPC 的特點是將多個印刷電路以及元件組合在一個可撓性基板上。它們通常由聚醯亞胺薄膜材料製成,這保證了高靈活性和熱穩定性。得益於其小型化設計,推動了主要電子領域的創新與應用,例如消費性電子、汽車、醫療設備、穿戴式裝置、通訊和航太領域。 軟性電路板所需空間更少且更可靠。您可以將其彎曲高達 360 度,大多數設計可承受 5 億次彎曲循環。自 1950 年代以來,該技術已以各種形式用於互連電子設備。它現在是許多當今最先進電子產品製造中最重要的互連技術之一。 軟性電路板的類型: 1) 單面軟性電路板: 單面軟性電路板是軟性電路板類型中最基本的一種。它由基材層、導電銅層、覆蓋層和絲印層組成。 它只有單層可撓性聚醯亞胺或聚合物薄膜,並且導電銅層僅在 PCB 的一側可接觸。因此,另一側可用於放置各種電子元件。其簡單的設計使其適用於各種應用且更實惠。因此,這也是它成為使用最廣泛的軟性電路的主要原因。 2) 雙面軟性電路板: 與單面軟性電路不同,雙面軟性電路板允許在頂部和底部銅層上創建走線圖案。您可以透過銅電鍍導......
Oct 23, 2025
軟性印刷電路板
柔性PCB製造流程:從原型設計到大量生產
柔性印刷電路板(Flexible Printed Circuit Board,俗稱柔性PCB)是現代電子技術的革命性進步,它提供緊湊、輕巧、動態和精確的設計。柔性PCB可以彎曲、扭轉和折疊,而剛性PCB則無法做到這一點。這些特性使其在穿戴式科技、消費性電子、航太和醫療科技等產業中廣泛應用。 隨著對小型化和人體工學產品設計的需求日益增長,了解柔性PCB從原型設計階段到量產的整個流程已變得至關重要。本文將介紹柔性PCB從原型設計到量產的整個流程。 柔性PCB的應用: 柔性 PCB 的興起源自於其多功能性。它們主要用於: ●醫療設備:心臟節律器、人工耳蝸和穿戴式診斷設備。 ●消費性電子產品:智慧型手機、可折疊螢幕和健身帶等。 ●汽車系統:汽車氣囊控制器、儀表板介面和感知器。 ●航空航天:衛星、航空電子設備和高可靠性通訊系統。 柔性PCB的製造步驟: 柔性 PCB 的製造過程與傳統 PCB 的製造過程幾乎相似,但需要使用專門的材料和工藝來確保靈活性、耐用性和品質控制。以下是正確操作的步驟: 1. 材料選擇: 最適合的基材是聚醯亞胺。之所以選擇它,是因為其卓越的熱穩定性和出色的柔韌性。它實際上是單面或雙面覆......
Jun 10, 2025
軟性印刷電路板
柔性PCB的基本設計指南
柔性印刷電路板 (Flex PCB) 在現代電子產品中發揮著至關重要的作用,它能夠實現緊湊輕巧的設計。柔性 PCB 在市場上並不新鮮,幾乎是所有電子產品的組成部分,包括小尺寸和小配件。因為對於剛性 PCB 來說,彎曲電線、安裝元件以及在小型手持設備中啟用電源並非易事。它們經過專門設計,用於佈線和顯示線路。儘管由於一些設計和可靠性問題,CPU 和 GPU 等重型電子設備仍然放置在剛性 PCB 上。設計和製造過程要求工程師遵循專門的設計原則。根據 JLCPCB 的深入建議,以下10 個關鍵指南可確保可靠、可製造且高效能的柔性 PCB 設計。 1.確保足夠的孔洞和通孔間隙 通孔與電路板輪廓的距離:根據 DRC,通孔與電路板之間必須至少保持 0.5 毫米的間隙。更實用的方法是使用通往框架的 U 形槽,以防止結構故障。 過孔與阻焊層之間的距離:過孔與阻焊層開口之間的距離至少應為 0.2 毫米,以避免銅暴露。銅暴露可能會導致短路和腐蝕。 2.避免焊盤內通孔設計 JLCPCB在剛性和柔性電路板上均採用焊盤內過孔技術。由於可靠性問題,在剛性結構中可以使用焊盤內過孔。剛性電路板也包含 BGA 封裝,這增加了焊盤內過......
Jul 09, 2025
軟性印刷電路板
FPC 設計規則:13 個不容忽視的安全距離
在FPC(柔性印刷電路板)設計中,忽略安全距離可能會導致焊盤脫落或電路短路等問題。例如,阻焊橋距離不足(小於0.5mm)會導致焊盤斷裂;焊盤距離邊緣過近(小於0.2mm)會導致碳化和短路;過孔放置不當會導致斷裂。精確控制這些細節是確保設計可靠性的關鍵。 有些人認為FPC設計中的安全距離無需嚴格遵循,大致測量即可。另一些人則認為,只要電路能夠正常運作,設計就沒問題。但您知道嗎?在FPC設計中,許多看似無關緊要的安全距離,如果被忽視,可能會導致嚴重的問題!今天,我們來仔細看看FPC設計中那些容易被忽略的安全距離—您知道多少? 1.阻焊層設計 阻焊橋距離不足 阻焊橋是指兩個焊盤之間的阻焊膜。焊盤之間的距離至少應為 0.5 mm,以確保阻焊橋不會斷裂。如果距離太小,阻焊橋容易斷裂。 之前 之後 阻焊窗口到銅的距離 阻焊窗口與銅箔之間的距離應大於0.15mm。如果距離太小,阻焊層可能會偏移,導致銅箔暴露,從而增加短路的風險。 錯誤 阻焊視窗長度 阻焊層窗口長度一般不宜超過20mm,且應避免大面積窗口。如果視窗過大,阻焊層在應用過程中可能會變形,導致貼合不良或錯位。 錯誤 摘要設計焊盤到輪廓的距離 焊盤距離輪......
Jun 10, 2025
- 1
- 2
- 3