PCB 阻抗控制:確保高頻電路中的訊號完整性
1 分鐘
阻抗是指當交流電施加到電路時電路所產生的反抗。它是電路在高頻時電容和感應的組合。阻抗以歐姆為單位進行測量,類似於電阻。如果阻抗不同,將會產生反射和衰減,導致訊號品質下降。
對於高頻類比或數位電路,保護在 PCB 上傳播的訊號免受損害是至關重要的。事實上,超過 100 MHz 的訊號受到微帶線特性阻抗的影響,如果沒有適當考慮,可能會導致難以分析的意外錯誤。幸運的是,阻抗控制允許設計者和 PCB 製造商管理這一現象。
什麼是阻抗控制和訊號匹配
阻抗控制是指將 PCB 微帶線尺寸和位置與基板材料的特性相匹配,以保持訊號在傳輸過程中無雜訊且無衰減。因此,印刷電路板(PCB)微帶線不再能夠被視為簡單的點對點連接。微帶線需要被視為傳輸線,阻抗匹配變成必要,以減少或消除對訊號完整性的影響。通過遵循良好的設計實踐和方法,可以避免或緩解許多潛在的訊號完整性問題。
因此,我們將討論阻抗控制的重要性、訊號完整性問題的原因以及避免它們的方法。
決定傳輸線阻抗的因素:
通常,微帶線特性阻抗在 25 至 125 歐姆之間,取決於以下因素:
● 介電常數的實部:介電厚度與特性阻抗成正比。介電越厚,特性阻抗越高。
● 損耗正切值和分散:在 PCB 設計中,損耗正切值測量介電材料在訊號通過時作為熱損失的能量。它影響訊號完整性,特別是在高頻下,導致訊號衰減。對於高速和射頻設計,更傾向於使用低損耗正切值材料以降低訊號衰減。
● 微帶線與附近參考平面之間的距離:微帶線之間的距離與特性阻抗成反比。適當的間距對於維持受控阻抗以及確保高速和射頻電路中的訊號完整性至關重要。
● 銅微帶線厚度和粗糙度:銅箔厚度與特性阻抗成反比。銅越厚,特性阻抗越低。銅厚度可以透過圖案電鍍或選擇具有適當厚度的基礎材料銅箔來控制。
● 微帶線寬度:微帶線寬度與特性阻抗成反比。較細的微帶線寬度具有較高的特性阻抗,而較寬的微帶線寬度具有較低的特性阻抗。在 ±20% 的公差範圍內控制微帶線寬度對於更好的阻抗控制是必要的。為了確保微帶線寬度的準確性,根據蝕刻下切、光刻誤差和圖案轉移誤差對光罩進行工程補償。
因此,PCB 設計者必須確保對於高頻訊號,他們選擇的微帶線和疊層結構使得能夠達到目標特性阻抗值,具有一定的公差。最先進的電子 CAD 設計工具會自動計算這個。
為什麼需要阻抗匹配?
PCB 微帶線的功能是將訊號功率從驅動裝置轉移到接收裝置。功率需要沿著微帶線的整個長度傳播。然而,最大訊號功率只有在 PCB 上的阻抗相匹配時才能實現。根據最大功率轉移定理,當兩個裝置的阻抗相匹配時,可以在裝置之間觀察到最大功率流。如果在 PCB 佈局階段沒有特別關注,那麼高頻訊號在從驅動器傳播到接收器時肯定會衰減。
一個常見的誤解是電路的時脈速率決定了電路是否在高速下運行。但是高速訊號與時脈訊號的上升/下降時間有關,即訊號從一個狀態改變到另一個狀態(邏輯 0 和邏輯 1)的速度有多快。
如何計算 PCB 微帶線特性阻抗?
如上所述,有許多因素涉及確定 PCB 微帶線特性阻抗。PCB 設計中的傳輸線可能有一些不同的公式,因此用開源軟體很難獲得阻抗匹配的精確值。最好的辦法是聯繫製造商並使用他們的校準阻抗計算器工具來計算特性阻抗。
JLCPCB 阻抗計算器工具是由 JLCPCB 提供的在線資源,用於幫助設計者計算 PCB 微帶線的特性阻抗。這個工具對於設計高頻電路至關重要,在這些電路中受控阻抗對於維持訊號完整性至關重要。
主要功能:
1. 微帶線類型選擇:在微帶線、帶狀線或差分對之間選擇。
2. 輸入參數:輸入微帶線寬度、微帶線厚度、介電常數以及微帶線與參考平面之間的距離。
3. 即時計算:該工具基於輸入參數提供特性阻抗的實時計算。
4. 材料特性:它允許您選擇不同的 PCB 材料,這會影響介電常數和特性阻抗。
選擇傳輸線的類型(例如微帶線或帶狀線),並輸入 PCB 材料的介電常數。輸入微帶線寬度、厚度和與參考平面的距離。該工具將計算並顯示特性阻抗值。這個工具被廣泛用於 PCB 設計中以確保特性阻抗與所需規格相匹配,特別是在高速或射頻電路中。您可以透過該網站訪問 JLCPCB 阻抗計算器。
阻抗控制方法在 PCB 上執行的計算是什麼?
微帶線越長或頻率越高,阻抗中需要的適應就越多。在這個階段缺乏嚴格性可能會增加電子裝置或電路的切換時間並導致意外錯誤。未受控的阻抗在元件安裝在電路上後很難分析。不同批次的元件具有不同的公差容量。阻抗控制方法根據訊號速度執行關鍵長度計算。
這就是為什麼微帶線特性阻抗和它們的公差必須在 PCB 設計的早期進行檢查。設計者必須與製造商密切合作以保證元件值的符合性。
實現阻抗匹配的方法是什麼?
良好控制的特性阻抗意味著微帶線特性阻抗沿著 PCB 路徑上的每個點保持恆定。這意味著無論微帶線在哪裡傳播,即使它改變層,特性阻抗應該在整個零件中保持不變,從訊號源到目的地。
我們需要考慮一些重要的設計標準。請記住,許多與反射和電磁干擾相關的問題可以透過良好的 PCB 設計技術來預防:
1) 低介電常數材料:
過去,通常指定 FR4。但是,對於高速設計,選擇正確的層板至關重要。建議並優先使用介電常數(Dk)較低的材料。這不僅確保最佳訊號效能,還會最小化訊號失真或訊號相位抖動。因此,您需要選擇最適合您應用的材料並在製造說明中指定這一點。
2) 訊號回流路徑:
在每個訊號路徑下方包括可以提供訊號回流路徑的電源平面是控制特性阻抗的重要步驟。通過避免不連續(例如電源平面中的分割或突出,在任何關鍵佈線下方),流經平面的回流電流將尋求跟隨與訊號層上的路由相同的物理路徑。
3) 層疊結構:
層疊結構是指 PCB 中各種層的排列,包括訊號層、接地平面、電源平面和介電材料。層疊結構在控制訊號微帶線的特性阻抗中起著重要作用,這對於阻抗匹配至關重要。適當的層排列是關鍵;訊號層通常與參考平面(接地或電源平面)相鄰放置,這有助於穩定和控制特性阻抗。
受控阻抗微帶線(如微帶線或帶狀線)是透過調整微帶線寬度、層疊結構和介電特性來設計的,以實現精確的特性阻抗控制。
需要仔細注意:
● 微帶線應保持盡可能短,並儘可能減少長度。
● 去耦電容的選擇和所需數量以及佈線迴路。
● 應避免佈線樁和不連續,它們會降低訊號品質。
● 對於差分對佈線,嘗試確保訊號對具有相同的長度。
● 接地參考平面和電流回流路徑。
● 由不良元件封裝引起的感應。
● 考慮使用沉積銀作為表面處理,而不是化學鎳/金(ENIG)。ENIG 中的鎳含量損耗很大,由於集膚效應,它不太適合高速設計。
阻抗控制驗證
阻抗控制可以在 PCB 製造後透過使用測試耦合器(測試耦合器是用於測試 PCB 製造工藝品質的 PCB。測試耦合器與 PCB 在同一面板上製造,通常在邊緣,確保適當的層對齐、電氣連接和截面)來驗證。然後,透過使用時域反射計(TDR)可以測試特性阻抗。隨後,將生成報告以指示是否在您的 PCB 上達到了特性阻抗。
電子設備的整體效能和電磁相容性行為不僅由電路設計和佈局幾何形狀決定,還由電源配電網絡決定。
結論
在實際 PCB 佈局上經歷的特性阻抗訊號可能與您從示意圖計算的理想值差異很大。主要原因是基板的存在和電路板的微帶線佈線。這導致串音等後果,偏離了理想的特性阻抗水平。當電路在高頻下切換時,可能會出現鳴鐘等電源完整性問題。在更高的頻率下,您的電源配電網絡的特性阻抗也將偏離最佳電容行為,這可能會導致訊號完整性和電源完整性問題。
透過理解特性阻抗不匹配的因果因素以及獲取可以緩解或消除特性阻抗問題的設計實踐知識,PCB 設計者可以創建真正的工程解決方案。一個能夠製造成可靠且高效能印刷電路板的強大設計。
持續學習
高速受控阻抗 PCB 的完整疊構設計
在不斷演進的電子世界中,高速受控阻抗 PCB 對於追求可靠效能的設計變得日益重要。隨著現代裝置需要更快的資料傳輸速率與最小的訊號失真,工程師在設計受控阻抗 PCB 時必須考量多項因素。本文將全面介紹受控阻抗 PCB 設計,聚焦於疊構考量、實際案例以及阻抗控制 PCB 計算器的使用。 什麼是受控阻抗 PCB? 受控阻抗指的是在 PCB 傳輸線中管理電容、電感與電阻等電氣特性,其主要目標是在訊號路徑上維持一致的阻抗位準,將反射與訊號衰減降至最低。需要阻抗控制的應用包括高速數位電路、RF 通訊系統與敏感的類比電路。 為何阻抗控制如此重要? 隨著資料速率持續提升,訊號完整性成為關鍵議題。未受控的阻抗可能導致訊號反射、串擾與電磁干擾(EMI),進而造成資料損毀、通訊錯誤,甚至系統失效。受控阻抗 PCB 透過管理傳輸線上的阻抗來維持訊號完整性。 高速受控阻抗 PCB 的疊構考量 在設計高速受控阻抗 PCB時,工程師必須考量疊構,其會影響電路板的電氣效能、製造複雜度與成本。以下為需評估的重點: 1. 層數 PCB 的層數會影響其複雜度與成本。更多層數可提供更佳的阻抗控制、降低 EMI 並實現更密集的佈線,然而也......
PCB 阻抗控制:確保高頻電路中的訊號完整性
阻抗是指當交流電施加到電路時電路所產生的反抗。它是電路在高頻時電容和感應的組合。阻抗以歐姆為單位進行測量,類似於電阻。如果阻抗不同,將會產生反射和衰減,導致訊號品質下降。 對於高頻類比或數位電路,保護在 PCB 上傳播的訊號免受損害是至關重要的。事實上,超過 100 MHz 的訊號受到微帶線特性阻抗的影響,如果沒有適當考慮,可能會導致難以分析的意外錯誤。幸運的是,阻抗控制允許設計者和 PCB 製造商管理這一現象。 什麼是阻抗控制和訊號匹配 阻抗控制是指將 PCB 微帶線尺寸和位置與基板材料的特性相匹配,以保持訊號在傳輸過程中無雜訊且無衰減。因此,印刷電路板(PCB)微帶線不再能夠被視為簡單的點對點連接。微帶線需要被視為傳輸線,阻抗匹配變成必要,以減少或消除對訊號完整性的影響。通過遵循良好的設計實踐和方法,可以避免或緩解許多潛在的訊號完整性問題。 因此,我們將討論阻抗控制的重要性、訊號完整性問題的原因以及避免它們的方法。 決定傳輸線阻抗的因素: 通常,微帶線特性阻抗在 25 至 125 歐姆之間,取決於以下因素: ● 介電常數的實部:介電厚度與特性阻抗成正比。介電越厚,特性阻抗越高。 ● 損耗正切值......
解決高頻 PCB 設計中的佈線與疊層難題
高頻 PCB 的設計呈現獨特的挑戰,特別是在佈線和疊層結構配置方面。適當的規劃和執行對於確保訊號完整性和最佳效能至關重要。以下,我們探討常見的問題和應對策略。 訊號完整性主要涉及阻抗匹配。影響阻抗匹配的因素包括訊號源架構、輸出阻抗、微帶線特性阻抗、負載特性和拓樸結構。解決方案涉及終止和調整微帶線拓樸。高速設計更容易受到電磁干擾/電磁相容(EMI/EMC)影響,請參閱如何透過更好的佈局設計來改進您 PCB 的 EMI-EMC 效能。 高頻 PCB 中的佈線挑戰: 高頻電路對電磁干擾(EMI)和串音高度敏感,因此精確的佈線至關重要。不當的佈線可能導致訊號衰減、雜訊增加和功能問題。以下是一些解決方案: • 阻抗控制:透過使用基於 PCB 材料和訊號頻率的適當微帶線寬度和間距,保持一致的微帶線特性阻抗。 • 最小化串音:將高速訊號微帶線保持分開,並使用差分對來降低雜訊。 • 避免訊號反射:為差分對匹配微帶線長度,並確保適當的終止。 • 減少過孔使用:限制過孔數量以防止訊號完整性損失和不必要的延遲。 高速訊號的手動佈線對比自動佈線 大多數進階 PCB 佈線軟體包括具有可配置限制的自動路由器,用於控制佈線方法......
更好的 EMC 標準設計指南
EMC衡量的是設備在其共用操作環境中按預期運作的能力,同時不影響同一環境中其他設備如預期運作的能力。評估設備在暴露於電磁能量時的反應是 EMC 測試的一部分,稱為抗擾度(或敏感度)測試。測量設備內部電氣系統產生的 EMI 量(稱為輻射測試)是 EMC 測試的另一部分。 EMC 的兩個面向在任何系統中都是重要的設計和工程考量。未能正確預測設備的 EMC 性能可能會帶來許多負面後果,包括防護風險、產品故障和資料遺失。因此,各種 EMC 和 EMI 測試設備應運而生,旨在幫助工程師更清楚地了解設備在實際條件下的運作。 EMC 的重要性:確保設備在運作時不受其他設備的干擾,且本身不會造成乾擾。 不斷增長的需求:隨著設備的複雜性和互連性不斷增加,EMC 對於合規性和功能性至關重要。 1.什麼是EMC? EMC 代表電磁相容性 (Electromagnetic Compatibility)。市場上銷售的所有電子設備/機器都必須符合 EMC 標準,這意味著它必須符合產品預期用途的 EMC 法規和標準。哪些 EMC 法規和標準適用於哪些產品,由產品銷售的國家/地區(例如歐盟或美國等)定義。 符合 EMC 規範的產......
6層PCB堆疊與建造指南
印刷電路板 (PCB) 是現代電子產品的支柱,為連接和支撐各種電子元件提供必要的基礎架構。隨著電子設備變得越來越複雜和緊湊,對多層 PCB 的需求也日益增長。其中,六層PCB是許多應用的熱門選擇。本文將深入探討六層 PCB 堆疊的具體細節、其應用、最佳配置以及選擇最佳製造商的指南。 為什麼要使用 6 層 PCB? 增強的功能: 六層 PCB 的主要優勢在於它能夠容納更複雜的電路。透過增加層數,設計人員可以添加更多佈線路徑,從而實現更高的元件密度和更佳的效能。這對於需要在有限空間內實現複雜設計的現代設備至關重要。 提高訊號完整性: 高速電路特別容易受到串擾和電磁幹擾 (EMI) 等訊號完整性問題的影響。 6 層 PCB 為專用接地層和電源層提供了額外的層,這有助於透過提供穩定的參考平面並降低雜訊來保持訊號完整性。 增強型配電: 六層 PCB 中的額外層可實現更佳的電力分配。這在具有多電壓等級和高電流需求的電路中尤其重要,因為它有助於降低電壓降並確保向所有組件持續供電。 更好的散熱: 熱量管理是 PCB 設計的關鍵方面。六層 PCB 中的附加層可提供更大的表面積和散熱路徑,從而提高散熱效果,從而增強電......