解決高頻 PCB 設計中的佈線與疊層難題
1 分鐘
高頻 PCB 的設計呈現獨特的挑戰,特別是在佈線和疊層結構配置方面。適當的規劃和執行對於確保訊號完整性和最佳效能至關重要。以下,我們探討常見的問題和應對策略。
訊號完整性主要涉及阻抗匹配。影響阻抗匹配的因素包括訊號源架構、輸出阻抗、微帶線特性阻抗、負載特性和拓樸結構。解決方案涉及終止和調整微帶線拓樸。高速設計更容易受到電磁干擾/電磁相容(EMI/EMC)影響,請參閱如何透過更好的佈局設計來改進您 PCB 的 EMI-EMC 效能。
高頻 PCB 中的佈線挑戰:
高頻電路對電磁干擾(EMI)和串音高度敏感,因此精確的佈線至關重要。不當的佈線可能導致訊號衰減、雜訊增加和功能問題。以下是一些解決方案:
• 阻抗控制:透過使用基於 PCB 材料和訊號頻率的適當微帶線寬度和間距,保持一致的微帶線特性阻抗。
• 最小化串音:將高速訊號微帶線保持分開,並使用差分對來降低雜訊。
• 避免訊號反射:為差分對匹配微帶線長度,並確保適當的終止。
• 減少過孔使用:限制過孔數量以防止訊號完整性損失和不必要的延遲。
高速訊號的手動佈線對比自動佈線
大多數進階 PCB 佈線軟體包括具有可配置限制的自動路由器,用於控制佈線方法和過孔數量。佈線引擎的功能和可用的限制在不同的 EDA 公司之間差異很大。例如,控制蛇形佈線(之字形)圖案或差分對之間的間距的能力可能有所不同。
這種可變性影響自動佈線的微帶線是否符合設計者的意圖。此外,手動調整的便利性與佈線引擎的功能密切相關,例如推動微帶線、過孔或甚至靠近銅灌注區域微帶線的能力。因此,選擇具有強大功能的佈線引擎是解決這些問題的關鍵。
改進高頻 PCB 設計佈線的提示:
1. 分離類比和數位部分:一般來說,分離數位和類比接地是正確的做法。重要的是確保訊號微帶線不會穿過分離的區域(隔離溝),並避免電源和訊號的過長回流路徑。
2. 晶體振盪器的佈線:晶體振盪器是類比正回饋振盪電路。為了產生穩定的振盪訊號,必須滿足環路增益和相位規格。這些振盪規格容易受到干擾,即使添加接地保護微帶線可能也無法完全隔離干擾。如果振盪器距離晶片太遠,接地平面的雜訊會影響正回饋振盪電路。因此,晶體振盪器必須盡可能靠近晶片放置。
3. 電磁干擾降低:基本原則是為 EMI 緩解而添加的電阻、電容或鐵氧體珠不應導致訊號的電氣特性不合規。最好優先使用佈線安排和 PCB 疊層技術來解決或減少 EMI 問題,例如在內部層上佈設高速訊號。電阻、電容或鐵氧體珠應作為最後手段,以最小化對訊號完整性的傷害。
什麼是差分佈線?
差分訊號傳輸(也稱為差分訊號)使用兩個完全相同且極性相反的訊號來傳輸一條資料。決定是基於兩個訊號之間的電壓差。為了確保兩個訊號完全一致,佈線必須保持平行度,具有統一的線寬和間距。
差分對佈線應適當接近並平行。間距影響差分特性阻抗(一個關鍵的設計參數)。平行度確保一致的差分特性阻抗。間距的變化可能導致差分特性阻抗不一致,影響訊號完整性和時序延遲。
設計中如何進行差分佈線?
差分對佈線需要兩個關鍵考慮:確保該對的微帶線長度相等,以及保持常數間距(由差分特性阻抗決定)的兩條微帶線之間。這些微帶線應保持平行。平行佈線可以透過兩種方式實現:同一層上並排或相鄰層上上下。並排方法更常用。
• 單一輸出的時鐘訊號的差分佈線:差分佈線只在訊號源和接收器都是差分訊號時才有意義。因此,不可能為單一輸出的時鐘訊號使用差分佈線。
• 匹配電阻的概念:在接收器的差分對之間通常添加匹配電阻。電阻值應匹配差分特性阻抗以改進訊號品質。
• 差分對之間的接地微帶線:一般來說,不應在差分訊號之間添加接地微帶線。這是因為差分訊號的主要優勢是它們的相互耦合,帶來磁通相消和雜訊免疫等好處。在中間添加接地微帶線會破壞耦合效應。
PCB 層中的銅灌注:
在大多數情況下,空白區域中的銅灌注連接到接地。然而,在高速訊號線附近灌注銅時,必須注意銅灌注與訊號線之間的距離,因為銅灌注可能略微降低微帶線的特性阻抗。此外,請確保銅灌注不會影響其他層的特性阻抗,例如在雙層微帶線配置中。
1. 電磁相容性(EMC):大面積的接地或電源銅灌注作為屏障。某些特殊的接地(如 PGND)提供保護功能。
2. PCB 製造要求:為了確保有效的電鍍或防止層壓過程中的變形,在微帶線較少的 PCB 層上灌注銅。
3. 訊號完整性要求:銅灌注為高頻數位訊號提供完整的回流路徑,並減少了直流網路微帶線的需求。它也用於散熱和滿足特殊元件安裝要求。
什麼是「訊號回流路徑」?
訊號回流路徑(也稱為回流電流)指電流流回驅動器的路徑。在高速數位訊號傳輸中,訊號從驅動器沿著 PCB 傳輸線傳到負載,然後從負載透過最短路徑經由接地或電源層返回到驅動器。這個返回訊號稱為訊號回流路徑。
Johnson 博士在他的著作中解釋道,高頻訊號傳輸本質上是傳輸線與直流層之間充電介電電容的過程。訊號完整性(SI)分析檢查這個場域的電磁特性及其耦合。
高頻 PCB 中的疊層問題
對於 4 層板,將自由焊盤或過孔定義為多層可確保它出現在所有四層上。如果僅定義為頂層,它將僅出現在頂層。不正確的層疊結構可能會加劇 EMI、阻抗不匹配和散熱問題,影響板的效能。以下是一些解決方案:
• 優化層配置:使用專用的接地和電源平面以改進 EMI 屏障並保持訊號完整性。
• 介電材料選擇:選擇低耗散因子(Df)和穩定介電常數(Dk)的材料,以最小化訊號損失。
• 規劃訊號層:確保關鍵高頻訊號靠近參考平面,以最小化雜訊和串音。
• 散熱管理:使用銅平面和散熱過孔有效地散發熱量。
例子:具有三個電源層(2.2V、3.3V、5V)的 12 層 PCB 上的電源處理:
在三個單獨的層上使用三個電源供應可以改進訊號品質,因為層間串聯分割不太可能發生。層間串聯分割是影響訊號品質的關鍵因素,儘管模擬軟體通常忽略它。對於電源和接地平面,兩者對於高頻訊號是等效的。
實際上,除了考慮訊號品質外,還應考慮電源平面耦合(利用相鄰接地平面以降低電源平面的交流阻抗)和對稱層疊結構等因素。
層疊排列如何有助於降低 EMI 問題?
EMI 必須在系統級別解決;PCB 本身無法解決所有問題。關於降低 EMI 的層疊設計,目標是為訊號提供最短的回流路徑、最小化耦合面積並抑制差模干擾。
此外,緊密耦合接地和電源層,電源層相對於接地層適當縮回有助於緩解共模干擾。
高頻材料選擇
選擇 PCB 材料需要在滿足設計要求、可製造性和成本之間尋求平衡。設計要求包括電氣和機械方面。在設計非常高速 PCB(頻率大於 GHz)時,材料考慮變得更加關鍵。
例如,常用的 FR-4 材料在數 GHz 的頻率下可能因介電損耗而造成顯著的訊號衰減,使其不適合使用。從電氣角度來看,材料的介電常數和介電損耗必須與設計頻率相容。由於較高的 Df 和 Dk 變異,FR-4 等材料可能不足以用於超高頻。這個問題的一些解決方案是:
• 使用專門的高頻層板,如 Rogers、Isola 或 Taconic,以支持穩定的訊號傳輸。
• 驗證材料與製造工藝的相容性,以避免分層或翹曲。
避免高頻干擾的提示?
避免高頻干擾的基本理念是最小化來自高頻訊號的電磁場干擾(也稱為串音)。這可以透過增加高速訊號和類比訊號之間的距離或在類比訊號旁邊添加接地保護微帶線或旁通微帶線來實現。另外,要注意來自數位接地到類比接地的雜訊干擾。
模擬和測試:
製造商正在使用 X 光檢測來檢測蝕刻或層壓缺陷等問題。對於表面貼裝後的成品板,通常使用在線測試(ICT),這需要在 PCB 設計期間添加 ICT 測試點。如果出現問題,專門的 X 光檢測設備可以確定故障是否是在製造過程中造成的。一些解決方案是:
• 使用 HFSS 或 ADS 等模擬工具來建模訊號行為。
• 進行訊號完整性(SI)和電源完整性(PI)分析以驗證設計假設。
• 使用時域反射計(TDR)和向量網路分析儀(VNA)進行現實驗證。
透過仔細解決佈線和疊層挑戰,高頻 PCB 設計可以實現可靠的訊號傳輸、最小雜訊和一致的效能。適當的材料選擇、層最佳化和徹底的測試確保您的設計滿足現代高速應用的需求。
什麼是測試耦合器?
測試耦合器用於使用時域反射計(TDR)測量製造的 PCB 的特性阻抗,以確保其符合設計要求。通常,受控阻抗包括單端微帶線和差分對。因此,測試耦合器上的微帶線寬度和間距(用於差分對)必須與 PCB 上的受控微帶線相匹配。
最關鍵的方面是測量期間的接地點位置。為了最小化接地引線的電感,TDR 探針的接地點通常非常靠近訊號測量點(探針尖端)。因此,測試耦合器上的測量訊號點和接地點的距離和方法必須與所使用的探針相匹配。
高速訊號中的測試點:訊號品質是否受到影響取決於測試點的添加方式和訊號速度。一般來說,外部測試點(不使用現有過孔或 DIP 引腳作為測試點)可能會直接添加到微帶線上,或透過從微帶線拉出一個小分支來添加。
原則上,測試點應盡可能小(同時仍滿足測試設備的要求),分支應盡可能短。
常見問題:
1. 您能推薦一些有關高速 PCB 設計的書籍和資源嗎?
• 《高速數位設計:黑魔法手冊》(Speed Digital Design: A Handbook of Black Magic),作者 Howard Johnson。
• 《訊號和電源完整性 – 簡化版》(Signal and Power Integrity – Simplified),作者 Eric Bogatin。
• 《電磁相容工程》(Electromagnetic Compatibility Engineering),作者 Henry W. Ott。
這些書籍涵蓋訊號完整性、EMI 和實踐設計策略。線上資源(如 Cadence、Keysight 和 JLCPCB 部落格)也提供寶貴的教程和設計提示。
2. 柔性和剛挠 PCB 設計是否需要專門的軟體和標準?
是的,設計柔性和剛挠 PCB 通常需要專門的軟體,如 Altium Designer、Cadence Allegro 或 Mentor Graphics,因為這些工具支援彎曲模擬和層疊結構配置等獨特功能。IPC-2223 等標準對於確保可靠性至關重要,涵蓋材料選擇、彎曲公差和微帶線佈線的指南。
熱門文章
持續學習
PCB 阻抗控制:確保高頻電路中的訊號完整性
阻抗是指當交流電施加到電路時電路所產生的反抗。它是電路在高頻時電容和感應的組合。阻抗以歐姆為單位進行測量,類似於電阻。如果阻抗不同,將會產生反射和衰減,導致訊號品質下降。 對於高頻類比或數位電路,保護在 PCB 上傳播的訊號免受損害是至關重要的。事實上,超過 100 MHz 的訊號受到微帶線特性阻抗的影響,如果沒有適當考慮,可能會導致難以分析的意外錯誤。幸運的是,阻抗控制允許設計者和 PCB 製造商管理這一現象。 什麼是阻抗控制和訊號匹配 阻抗控制是指將 PCB 微帶線尺寸和位置與基板材料的特性相匹配,以保持訊號在傳輸過程中無雜訊且無衰減。因此,印刷電路板(PCB)微帶線不再能夠被視為簡單的點對點連接。微帶線需要被視為傳輸線,阻抗匹配變成必要,以減少或消除對訊號完整性的影響。通過遵循良好的設計實踐和方法,可以避免或緩解許多潛在的訊號完整性問題。 因此,我們將討論阻抗控制的重要性、訊號完整性問題的原因以及避免它們的方法。 決定傳輸線阻抗的因素: 通常,微帶線特性阻抗在 25 至 125 歐姆之間,取決於以下因素: ● 介電常數的實部:介電厚度與特性阻抗成正比。介電越厚,特性阻抗越高。 ● 損耗正切值......
解決高頻 PCB 設計中的佈線與疊層難題
高頻 PCB 的設計呈現獨特的挑戰,特別是在佈線和疊層結構配置方面。適當的規劃和執行對於確保訊號完整性和最佳效能至關重要。以下,我們探討常見的問題和應對策略。 訊號完整性主要涉及阻抗匹配。影響阻抗匹配的因素包括訊號源架構、輸出阻抗、微帶線特性阻抗、負載特性和拓樸結構。解決方案涉及終止和調整微帶線拓樸。高速設計更容易受到電磁干擾/電磁相容(EMI/EMC)影響,請參閱如何透過更好的佈局設計來改進您 PCB 的 EMI-EMC 效能。 高頻 PCB 中的佈線挑戰: 高頻電路對電磁干擾(EMI)和串音高度敏感,因此精確的佈線至關重要。不當的佈線可能導致訊號衰減、雜訊增加和功能問題。以下是一些解決方案: • 阻抗控制:透過使用基於 PCB 材料和訊號頻率的適當微帶線寬度和間距,保持一致的微帶線特性阻抗。 • 最小化串音:將高速訊號微帶線保持分開,並使用差分對來降低雜訊。 • 避免訊號反射:為差分對匹配微帶線長度,並確保適當的終止。 • 減少過孔使用:限制過孔數量以防止訊號完整性損失和不必要的延遲。 高速訊號的手動佈線對比自動佈線 大多數進階 PCB 佈線軟體包括具有可配置限制的自動路由器,用於控制佈線方法......
更好的 EMC 標準設計指南
EMC衡量的是設備在其共用操作環境中按預期運作的能力,同時不影響同一環境中其他設備如預期運作的能力。評估設備在暴露於電磁能量時的反應是 EMC 測試的一部分,稱為抗擾度(或敏感度)測試。測量設備內部電氣系統產生的 EMI 量(稱為輻射測試)是 EMC 測試的另一部分。 EMC 的兩個面向在任何系統中都是重要的設計和工程考量。未能正確預測設備的 EMC 性能可能會帶來許多負面後果,包括防護風險、產品故障和資料遺失。因此,各種 EMC 和 EMI 測試設備應運而生,旨在幫助工程師更清楚地了解設備在實際條件下的運作。 EMC 的重要性:確保設備在運作時不受其他設備的干擾,且本身不會造成乾擾。 不斷增長的需求:隨著設備的複雜性和互連性不斷增加,EMC 對於合規性和功能性至關重要。 1.什麼是EMC? EMC 代表電磁相容性 (Electromagnetic Compatibility)。市場上銷售的所有電子設備/機器都必須符合 EMC 標準,這意味著它必須符合產品預期用途的 EMC 法規和標準。哪些 EMC 法規和標準適用於哪些產品,由產品銷售的國家/地區(例如歐盟或美國等)定義。 符合 EMC 規範的產......
6層PCB堆疊與建造指南
印刷電路板 (PCB) 是現代電子產品的支柱,為連接和支撐各種電子元件提供必要的基礎架構。隨著電子設備變得越來越複雜和緊湊,對多層 PCB 的需求也日益增長。其中,六層PCB是許多應用的熱門選擇。本文將深入探討六層 PCB 堆疊的具體細節、其應用、最佳配置以及選擇最佳製造商的指南。 為什麼要使用 6 層 PCB? 增強的功能: 六層 PCB 的主要優勢在於它能夠容納更複雜的電路。透過增加層數,設計人員可以添加更多佈線路徑,從而實現更高的元件密度和更佳的效能。這對於需要在有限空間內實現複雜設計的現代設備至關重要。 提高訊號完整性: 高速電路特別容易受到串擾和電磁幹擾 (EMI) 等訊號完整性問題的影響。 6 層 PCB 為專用接地層和電源層提供了額外的層,這有助於透過提供穩定的參考平面並降低雜訊來保持訊號完整性。 增強型配電: 六層 PCB 中的額外層可實現更佳的電力分配。這在具有多電壓等級和高電流需求的電路中尤其重要,因為它有助於降低電壓降並確保向所有組件持續供電。 更好的散熱: 熱量管理是 PCB 設計的關鍵方面。六層 PCB 中的附加層可提供更大的表面積和散熱路徑,從而提高散熱效果,從而增強電......