PCB 設計工具與最佳實務
深入瞭解推薦的 PCB 設計流程、常用功能應用與實證技術,藉此提升設計效率並確保產品品質。
精選貼文
設計工具與最佳實務
電子電路解算器:簡化電路分析,讓每個人都能輕鬆上手
在電子領域,最具挑戰性的任務之一就是求解複雜的電路。無論您是正在完成作業的學生、進行 DIY 專案的愛好者,還是設計先進系統的工程師,擁有合適的電子電路求解工具都能節省時間、減少錯誤並提高效率。這正是電子電路解算器的作用所在。這些工具旨在使電路分析更簡單、更快速、更準確。 在本文中,我們將介紹電子電路解算器是什麼、它的特點、它是如何運作的,以及為什麼它會改變任何從事電子電路工作的人的遊戲規則。 1.什麼是電子電路解算器? 電路求解器是一些程式或網站,可以幫助你了解電路的工作原理以及它們應該如何運作。這些工具會自動完成工作,因此你無需手動求解方程式並計算電壓、電流和功率。 它們的工作原理是模擬你的電路,找到電阻器、電容器和電感器等零件,然後找出你想要的因素,例如: ⦁ 部件之間的電壓下降。 ⦁ 電流流經每個分支。 ⦁ 電阻器斷電。 一些更複雜的解算器甚至可以讓您在建造真實電路之前查看訊號、嘗試不同的佈局並改進您的設計。 2. 電子電路解算器如何運作? 步驟很簡單: ⦁輸入電路設計:首先,將您的電路設計輸入到求解器中。您可以在程式中手動繪製電路圖,也可以上傳其他人已經繪製的原理圖。 ⦁ 定義電路參數:......
Jul 23, 2025
最新貼文
設計工具與最佳實務
PCB 設計中銅箔走線的創新應用
銅導線是印刷電路板(PCB)中不可或缺的元件,為電流在整個電路板上提供傳導路徑。銅導線的表面處理對其功能性與可靠性有決定性影響。目前有多種表面處理可供選擇,每種都有其優勢,正確的選擇取決於銅導線的預期用途。本文將探討銅導線在 PCB 設計中的創新應用,以及可提升其功能的表面處理方式。 為 PCB 設計中的銅導線選擇合適的表面處理 銅導線的表面處理對其功能性與可靠性影響重大。常見的表面處理包括 ENIG、HASL、沉積銀、OSP 與沉積錫,每種都有其優點,需依銅導線的用途選擇。 ENIG 適用於需要高可靠性與抗腐蝕性的銅導線,常見於航太與工業電子。HASL 成本較低,導電性良好,但可靠性不如 ENIG 且較易腐蝕。沉積銀導電性佳、接觸電阻低,但長時間易氧化。OSP 價格低廉、焊錫性良好,但可靠性較低且易氧化。沉積錫表面均勻、焊錫性優異,但可靠性較低且易產生晶鬚導致短路。 銅導線作為電容與電感:實現高效 PCB 的設計技巧 銅導線可設計成電容或電感以儲存電能。透過特定形狀設計,可省去額外元件,縮小體積並降低成本。表面處理需依用途選擇:作為電容時,ENIG 提供優異抗腐蝕性與可靠性;作為電感時,HASL......
Jan 06, 2026
設計工具與最佳實務
如何避免 PCB 設計中的陷阱
設計印刷電路板(PCB)時,必須仔細考量多項因素,才能確保製程順利並避免潛在陷阱。從孔徑與槽孔設計,到線寬與銅箔灌注,掌握這些要點對於打造可靠且功能正常的 PCB 至關重要。本文將探討 PCB 設計中的常見陷阱,並提供克服建議。 導通孔孔徑設計 在 PCB 製造中,0.3 mm 的孔被視為標準孔,小於 0.3 mm 則歸類為小孔。 小孔可能對生產造成多項負面影響: 電鍍困難:孔徑越小,越容易發生電鍍不良或無電鍍。針對小孔,JLCPCB 採用四線低阻製程以確保可靠度。 加工效率降低:小孔需降低鑽孔速度並使用更短鑽頭,導致一次可鑽板材數量減少。因此設計時建議優先採用 0.3 mm 以上孔徑,僅在空間受限時才考慮小孔。 JLCPCB 的最小製程能力: 單/雙面板:0.3 mm(內徑)/0.45 mm(外徑) 多層板:0.15 mm(內徑)/0.25 mm(外徑) 外徑應比內徑大 0.1 mm 以上,建議差距 ≥0.15 mm。 導通孔槽孔設計 PCB 鑽孔中的短槽:長度小於寬度兩倍的槽孔稱為短槽。短槽的最佳長寬比為長度/寬度 ≥2.5(極限值 ≥2)。 長槽選用噴錫處理:若槽孔需經噴錫,建議單邊最小寬度......
Jan 06, 2026
設計工具與最佳實務
5 個常見的 PCB 設計新手錯誤(以及如何避免)
印刷電路板(PCB)是現代電子產品中不可或缺的元件,從智慧型手機、筆記型電腦到汽車與家電都能見到它的身影。PCB 提供了一種高效連接電子元件的方式,能以精簡且可靠的途徑傳輸訊號與電力。然而,設計 PCB 並非易事,尤其對初學者而言。 本文將探討初學者最常犯的 5 大 PCB 設計錯誤及其解決方法。這些錯誤可能導致訊號干擾、散熱問題、電源供應異常,甚至損壞元件。避開這些陷阱,才能確保你的 PCB 既穩定又可靠。 錯誤一:未使用接地層 接地層是 PCB 上大面積且連接到地的銅面,可作為屏蔽層,防止電磁干擾(EMI)影響板上的訊號。若未使用接地層,訊號容易夾雜雜訊,進而降低電路效能。 解決方法:在設計中加入接地層。大多數 PCB 設計軟體都內建快速添加接地層的功能,只需新增一層並將其連接到地網路,即可形成大面積銅面作為接地層。 錯誤二:未檢查間距規則 間距規則(DRC)指的是 PCB 上兩個導電物件(如兩條走線或走線與焊墊)之間的最小距離。忽略間距規則可能導致短路或訊號干擾。 解決方法:在PCB 設計軟體中設定間距規則。多數軟體提供「Rooms」功能,可針對不同區域或物件設定最小間距,避免元件過於靠近而......
Jan 06, 2026
設計工具與最佳實務
選擇合適的 PCB 形狀
為 PCB 選擇合適的外形是至關重要的決策,會大幅影響電子裝置的整體效能、可製造性與美觀。雖然矩形 PCB 最常見且用途廣泛,但還有各種其他形狀能在特定應用中提供獨特優勢。在這份全面指南中,我們將探討不同的 PCB 形狀,為每種形狀提供範例,並展示它們如何優化設計與功能。透過了解 PCB 外形的重要性並參考具體範例,您就能做出明智決策,提升電子系統的表現。 矩形 PCB:經典之選 矩形 PCB 是歷經考驗的可靠選擇,廣泛應用於各行各業。其矩形外形簡單、易於製造,且與標準製程相容。這種形狀可讓元件高效擺放、訊號走線簡單,並能與標準外殼整合。例如,高階筆電通常採用矩形 PCB,以最大化內部空間利用率。矩形設計讓處理器、記憶體、儲存裝置及其他元件得以緊湊排列,造就輕巧而強大的運算裝置。 圓形 PCB:緊湊設計的最佳解 圓形 PCB 在空間有限或追求獨特外觀的應用中特別有利。圓形無尖角,可減少應力集中點,提升機械可靠性。智慧手錶、健身追蹤器與小型醫療裝置常見圓形 PCB。舉例來說,採用圓形外觀的健身追蹤器 PCB,能在手腕上最佳化空間利用,同時提供吸引人且符合人體工學的造型。圓形設計讓感測器、電池與顯示模......
Jan 06, 2026
設計工具與最佳實務
提升您的電路設計技巧:改善效能的提示與技術
電路設計是現代電子學的關鍵環節,直接影響電子裝置的功能、效能與可靠度。因此,電子工程師與設計人員必須掌握最優秀的電路設計軟體工具。本文將介紹 2023 年最受歡迎的電路設計軟體,並提供專家建議與最佳實務,助您完成高品質的電路設計。 為何電路設計如此重要? 電路設計涵蓋從簡單電路到複雜整合系統的創建過程。電路由 電子元件(如電阻、電容、電晶體)依特定方式排列,以產生所需的電氣輸出。設計好壞將決定功能、效能與可靠度,是工程師與設計人員不可忽視的核心課題。 1. 功能性 電路設計的首要任務,是確保裝置能完成預定功能。設計必須符合電壓、電流、頻率等規格,並在印刷電路板(PCB)的尺寸與形狀限制下完成佈局。優秀的設計能讓裝置如預期運作,滿足終端使用者需求。 2. 可靠度 電路設計直接關係到產品壽命。設計不良可能導致失效或異常,例如電源電路不穩,使電壓波動並損壞其他元件。穩健的設計可提升可靠度,降低故障率。 3. 效能 電路設計決定裝置能否在最低功耗下達到最高效率。設計時需抑制雜訊與干擾,並確保裝置在溫濕度等容許範圍內穩定運作。 4. 成本 設計階段就決定後續生產成本。不良設計會增加製造與測試時間,推高整體費......
Jan 06, 2026
設計工具與最佳實務
空白 PCB 與零件:在空板上的建構之旅
空白 PCB 指的是尚未放置任何元件的未組裝電路板。它由覆銅基板製成,經過鑽孔、阻焊與表面處理,是工程師進行原型、實驗與 DIY 專案的畫布。這類單純的 PCB 不含元件。讓我們深入探討產業採用的標準與技術。 通用空白板 vs 預佈線原型板 通用空白板為覆銅板與通用洞洞板,屬於覆蓋銅箔的絕緣基板,可自行蝕刻或手動配線,適合客製形狀與一次性實驗,常用於實驗室、小量蝕刻或手動設計走線。 預佈線原型板則為洞洞板與 SMD 網格板,已預製孔陣列或 SMD 焊盤,方便由麵包板過渡到 PCB,適合 DIY 專案,優勢在於快速而非客製走線。兩者各有定位:通用空白板重客製,預佈線原型板重速度。 覆銅類型:單面 vs 雙面 vs 多層 單面 (1 層): 僅在電路板一側覆銅,成本低、機械穩定性佳,適合不需複雜走線且可接受跳線的專案。 雙面 (2 層): 雙面覆銅並有鍍通孔與導通孔,可在兩面走線,最常見。通常一面為地平面,另一面為訊號走線,是複雜度較低 PCB 的經濟選擇。 多層 (4 層以上): 針對高密度與複雜設計,需多層與適當疊構,以控制阻抗或高雜訊/高速電路。高速設計時須兼顧訊號與電源完整性。 空白 PCB ......
Jan 03, 2026
設計工具與最佳實務
如何用 Python 打造專屬的 PCB 走線寬度計算器
我們都知道 PCB 走線的重要性,但設計完美走線是否有固定規則?當然,所有規則都在 IPC 指南中列出。讓我們深入探討走線,包括其長度、寬度、載流能力以及 PCB 設計中存在的寄生類型。我們都知道 PCB 走線由銅製成,整體厚度為 1 或 2 盎司的薄層。由銅製成並不代表沒有電阻。電阻的基本規則是:走線越厚越寬,電阻越低;若走線細且長,則電阻較高。誰會希望因走線而損失訊號功率? 讓我們以一個例子開始:如果我正在設計一塊電源 PCB,走線長 10 mm,流經電流為 5 A,那麼厚度應該是多少?我們需要查閱 IPC 來計算,但在電腦時代,手算已不再必要!是的,您可以使用線上計算器,但為何要依賴它們?我們將設計獨立的程式碼 回到核心問題——我的銅走線應該多寬?答案取決於多個因素,如所需承載的電流、可接受的溫升、銅厚度,以及走線位於內層或外層。為簡化流程,我基於IPC-2152 指南開發了 Python 走線寬度計算器。本文將介紹設計流程、考慮參數與工具功能,並說明如何在任何線上 Python 編譯器中執行。 需考慮的參數 設計此計算器時,我納入了影響走線寬度的關鍵參數: 1. 電流容量 (A) – 走線......
Jan 03, 2026
設計工具與最佳實務
初學者應避免的 5 個常見 PCB 設計錯誤
然而,在科技與科學領域中,有許多藝術的空間;我們在設計時實際上是在創作藝術,這是真的!一種需要大量數學與物理現象的藝術。今天,我們將討論一種類似的藝術,也就是 PCB 設計。每位電子工程師最終都希望將電路實現在 PCB 上來解決特定問題。因為它在電子領域非常普遍,JLCPCB 團隊開始了這些教育部落格。今天,在本指南中,我們將探討一些在PCB 設計中新手常見且應避免的設計錯誤,並深入了解背後的科學原理。 1. 規劃不良與元件擺放不當 如今,由於裝置的高度整合,我們使用包含數位與類比部分的混合訊號系統。類比部分速度較慢但易受雜訊影響;另一方面,數位部分以高頻運作,成為雜訊的主要來源。因此,在設計此類混合訊號電路時,我們應遵循設計規則。將數位與類比部分至少分開 20H,其中 H 為兩層 L1 與 L2 之間的距離。分開擺放可降低雜訊,並避免其他層的走線交叉。不良的擺放會增加走線長度(更高的損耗與 EMI)並惡化散熱,也使電源佈線變複雜,並經常在佈線時被迫使用許多過孔與跨接。 如何避免: 將功能區塊(電源、類比、數位、RF)分組並朝向,使相關接腳之間的連線最短。 對混合訊號使用 20H 法則。 預留測試......
Jan 03, 2026
設計工具與最佳實務
PCB 設計工具全面解析:從零成本到企業級
每片 PCB 都始於合適的工具組,從簡單的免費編輯器到百萬美元套裝軟體。現代 EDA 工具涵蓋完整流程,從線路圖到佈局與走線。某些 EDA 工具內建訊號模擬器,能自動化 PCB 設計的繁瑣部分。如今,一套簡單工具即可處理線路圖繪製、佈局、走線、封裝建立與 BOM 產生。使用這類軟體就像為電路板提供藍圖。本文將探討不同 EDA 工具的專長,並觀察它們在複雜或嚴苛設計上的表現。 線路圖繪製 → 佈局 → 模擬 → 發布 線路圖繪製:在線路圖編輯器中繪製含元件與網路的電路。這份邏輯圖即 PCB 的藍圖,所有網路與元件皆在此定義。優秀的擷取工具可檢查電氣規則(ERC)並對線路圖執行 SPICE 模擬。現代套裝軟體可自動從線路圖產生網表與 BOM,確保資訊完整。 PCB 佈局:接著進行實體設計。設定板尺寸與疊構後,將元件封裝拖曳到電路板上並佈線銅跡。EDA 會執行設計規則檢查,如間距、走線寬度與阻抗規則。實務上,佈局工具會協助結合線路圖資料、擺放與佈線,簡言之,將整齊的線路圖轉化為實體電路板。 模擬與驗證:送製造前應先模擬或驗證設計。基礎 SPICE 或訊號完整性模擬器可在線路圖或已佈線的電路板上執行。許多......
Jan 03, 2026
設計工具與最佳實務
PCB 電氣精通:設計、測試與除錯
PCB 電氣設計涵蓋訊號完整性、電源傳輸、安全性與 EMC。把這四項視為支撐設計的四大支柱。訊號支柱代表繞線時保持資料完整並避免反射;電源支柱則透過平面銅箔、去耦電容與散熱來實現強健配電;安全支柱規範絕緣與沿面距離;EMC(電磁相容性)則確保板子不會發射或接收雜訊。符合 EMC 的設計不得干擾其他設備。實務上需要完整接地平面,並仔細放置時脈與類比電路。 訊號 + 電源 + 安全 + EMC — 四大支柱 高速數位路徑需要受控阻抗與不中斷的回流路徑。電源軌需寬銅箔與充足去耦,避免電壓跌落。安全規則要求高壓網路具足夠沿面距離與隔離。EMC 考量則確保板子輻射最小並能抗干擾。例如,設計師常將時脈與高頻訊號走在內層,上下夾著接地平面以抑制 EMI。同樣地,為了電源完整性,四處放置旁路電容來馴服電源雜訊。 在畫第一條線之前就定義電氣規則 鋪銅前,先在設計工具中設定電氣規則:指定網路類別、間隙規則、電流限制與阻抗目標。 從電路圖開始:依功能(如電源、MCU、RF)分群,方便閱讀。為每條網路取描述性名稱,不要只叫 VCC,改用 +5V_MICRO 或 +12V_ANALOG 區分關鍵軌。接著立即執行電氣規則檢查......
Jan 03, 2026
設計工具與最佳實務
PCB 藝術:令人驚豔的設計與 DIY 製作教學
通常情況下,PCB 的設計是為了在由佈線組成的小型板材上複製複雜的電路,其核心目的是連接不同的電子零件。然而,談到印刷電路板的美學與功能性時,現在也存在各種不同的應用,例如彩色 PCB 和 PCB 名片。PCB 藝術的興起並非偶然,隨著 JLCPCB 的引入,這類藝術品的製作變得更加容易。這吸引了一個熱愛展現創意與 RGB 燈效的社群;那些希望作品既具備功能性又具備收藏價值的工程師,開始採用 PCB 藝術設計。PCB 藝術與彩色 PCB 已將電路板從單純的功能組件轉變為視覺設計。透過 JLCPCB 等服務,設計師可以利用銅層、防焊層開窗和文字層來創作 PCB 藝術。 社群熱潮與爆紅現象 一塊擁有彩色防焊漆和不同顏色文字層的電路板,只需一則推文就能從原型變成網路爆紅話題。以 Arduino Mega 的圖片為例,看看它的視覺效果有多麼迷人。社群對 PCB 藝術概念的著迷主要有三個原因: 易於分享:視覺設計非常適合社交媒體與硬體作品展示。 門檻低:如果你已經熟悉 KiCad 或 Eagle,創作藝術主要取決於設計決策,而非額外的技術門檻。 工廠支援:快速打樣工廠提供了多樣化的顏色選擇。 如果你想獲得關......
Jan 02, 2026
設計工具與最佳實務
電子電路解算器:簡化電路分析,讓每個人都能輕鬆上手
在電子領域,最具挑戰性的任務之一就是求解複雜的電路。無論您是正在完成作業的學生、進行 DIY 專案的愛好者,還是設計先進系統的工程師,擁有合適的電子電路求解工具都能節省時間、減少錯誤並提高效率。這正是電子電路解算器的作用所在。這些工具旨在使電路分析更簡單、更快速、更準確。 在本文中,我們將介紹電子電路解算器是什麼、它的特點、它是如何運作的,以及為什麼它會改變任何從事電子電路工作的人的遊戲規則。 1.什麼是電子電路解算器? 電路求解器是一些程式或網站,可以幫助你了解電路的工作原理以及它們應該如何運作。這些工具會自動完成工作,因此你無需手動求解方程式並計算電壓、電流和功率。 它們的工作原理是模擬你的電路,找到電阻器、電容器和電感器等零件,然後找出你想要的因素,例如: ⦁ 部件之間的電壓下降。 ⦁ 電流流經每個分支。 ⦁ 電阻器斷電。 一些更複雜的解算器甚至可以讓您在建造真實電路之前查看訊號、嘗試不同的佈局並改進您的設計。 2. 電子電路解算器如何運作? 步驟很簡單: ⦁輸入電路設計:首先,將您的電路設計輸入到求解器中。您可以在程式中手動繪製電路圖,也可以上傳其他人已經繪製的原理圖。 ⦁ 定義電路參數:......
Jul 23, 2025
- 1
- 2