如何選擇 PCB 的 Tg ?
1 分鐘
什麼是 PCB 的 Tg 值?
在 PCB 製造中,縮寫「Tg」代表「玻璃轉移溫度」(Glass Transition Temperature),是指材料在加熱過程中,從固態轉變為橡膠彈性狀態的溫度。眾所周知,PCB 必須具備耐燃性,在特定溫度下不能燃燒,而只能軟化。
當溫度超過 Tg 時,PCB 基板材料 FR-4 會從脆硬狀態轉變為柔軟狀態。這種轉變可能導致 PCB 的尺寸變化和變形,最終影響其機械與電氣特性。因此,在選擇 PCB 材料時,必須考慮所需的工作溫度範圍,以確保所選材料的 Tg 值能滿足設計要求。
高 Tg 值的 PCB 基板能確保電子設備在各種環境條件下(無論是炎熱的夏季還是寒冷的冬季)都能正常運作。在 PCB 設計與製造中,選擇具備適當玻璃轉移(Tg)值的基板,是確保產品品質與效能的關鍵因素。
PCB Tg 等級分類
在 PCB 製造中,工程師會根據應用需求選擇合適的 FR-4 基板。標準基板材料多為環氧樹脂系統,而 Tg 值是分類 FR-4 基板等級最常見的指標。
根據溫度,一般分為三個等級:一般 Tg、中 Tg 以及高 Tg。
一般 Tg:
低階 FR-4 板材的玻璃轉移溫度(Tg)通常在 130-140℃ 左右。然而,憑藉其優異的物理特性、成熟的生產技術及價格優勢,它仍是大多數電路板製造商的首選材料。例如,對於一般的 3C 消費性電子產品,溫度要求不高,選擇標準 Tg 值即可滿足需求。一般而言,標準 Tg 板材的加工製程成熟簡單,生產成本低,具有良好的經濟效益。
中 Tg:
中 Tg 值約為 150°C。與普通 FR-4 板材相比,Tg150 板材具有更好的耐熱性、耐濕性及耐化學性。它們能在高溫、高濕及腐蝕性環境中長期可靠運行。因此,Tg150 板材適用於要求較高的領域,如高速數位電路、微波頻率電路及高頻電路。不過,Tg150 板材的加工難度高於普通 Tg 板材,成本也相對較高。
高 Tg:
若基板的玻璃轉移(Tg)值在 170°C 以上,表示該 PCB 具有極高的耐熱性、耐濕性、耐化學性及尺寸穩定性等重要特性。這在無鉛噴錫(HASL Lead-free)製程中至關重要,因為該製程需要較高的 Tg 值。
若 PCB 加工過程中存在時間限制、層數較多、焊接溫度較高(≥230℃)、工作溫度高(100℃ 以上)或焊接熱應力顯著(如波峰焊),建議選擇高 Tg 板材。
高 Tg 板材主要用於高層數印刷電路板(10 層以上)、汽車工業、封裝材料、嵌入式基板、工業控制精密儀器、路由器等領域。但需注意,Tg 值越高,PCB 電路板的成本也隨之增加。一般而言,較高的 Tg 值代表板材的耐溫性更好,能減少板材變形並提高抗翹曲能力。
然而,由於玻璃轉移(Tg)點較高,也代表板材在加工與壓合過程中的溫度要求更高。這會導致基板相對較硬且較脆,在一定程度上會影響後續機械鑽孔的品質及使用時的電氣特性。選擇時應根據實際需求兼顧成本。
選擇合適的層壓板時,需綜合考慮電氣、機械、化學及熱特性。在一般場景下,中、低 Tg 的 FR-4 已能完全滿足需求。
針對多層 PCB,JLCPCB 目前提供高 Tg 的 FR-4 選項。例如,「高精密 PCB」服務可製造高達 20 層的電路板,這對於需要複雜佈局和大規模整合的專案非常有用。這種高 Tg FR-4 材料能在高溫環境下保持穩定並提供優異效能。
如何選擇 PCB 的 Tg 值?
選擇 PCB 的最高工作溫度(Tg)是一項重要決策,決定了 PCB 在高溫環境下的可靠性與效能。以下是選擇 PCB Tg 值的一些建議:
1. 了解應用環境:首先確定應用環境中可能出現的最高溫度。考慮 PCB 運作時的溫度條件,包括環境溫度、預期發熱量及散熱情況等。這將有助於您確定所需的 PCB Tg 範圍。
2. 考慮元件的最高工作溫度:檢查計畫在 PCB 上使用的元件之最高工作溫度。確保所選 PCB 的 Tg 至少能滿足所有元件的最高工作溫度要求。通常,PCB 的 Tg 應高於元件的最高工作溫度,以確保元件的正常運作與壽命。
3. 選擇合適的 PCB 材料:選擇具備高 Tg 的材料。Tg 代表 PCB 基板在持續高溫條件下維持其結構強度與電氣特性的能力。
4. 考慮 PCB 製造製程:不同的製造製程可能會影響 PCB 的玻璃轉移溫度(Tg)。某些製程可能會降低 PCB 的實際 Tg。在選擇 PCB 製造商時,應清楚了解其製造製程及控制 Tg 的能力,以確保其能滿足您的要求。
簡而言之,選擇 PCB 的 Tg 值需要綜合考慮應用環境、元件最高工作溫度、PCB 材料及製造製程等因素。確保所選 PCB 具有足夠高的 Tg,以保證其在高溫環境下的可靠性與效能。
持續學習
掌握標準 PCB 厚度:為您的 PCB 原型選擇理想厚度的逐步指南
印刷電路板(PCB)的厚度看似微不足道,卻對電子設備的效能與可靠度至關重要。標準 PCB 厚度已成為業界慣例,能帶來機械穩定性、電氣效能、熱管理與元件相容性等多方面優勢。本文將深入探討 PCB 厚度差異的重要性,並提供選擇合適厚度的指南,協助您依據特定應用提升裝置的可靠性與效能。 標準 PCB 厚度是多少? 標準 PCB 厚度指的是業界普遍採用且偏好的電路板厚度。雖然沒有官方單一標準,但某些尺寸已被廣泛接受。早期,標準 PCB 厚度為 1.57 mm(約 0.062 英吋),源自早期電路板製作所用的酚醛樹脂板材尺寸。儘管現今已有更薄的選項,此厚度因歷史悠久且與既有製程相容,仍為常見選擇。目前常見的標準 PCB 厚度包括 0.031 英吋(0.78 mm)、0.062 英吋(1.57 mm)與 0.093 英吋(2.36 mm)。PCB 厚度的選擇取決於銅厚、板材、層數、訊號類型、導通孔類型及操作環境等因素。 PCB 厚度的重要性 機械穩定性:PCB 厚度直接影響其機械穩定性。較厚的電路板剛性更高,更能承受振動與彎曲,適用於高應力環境;較薄的電路板則具備柔韌性,可用於輕薄短小的設計。 電氣效能:PC......
PCB 基礎 1:印刷電路板(PCB)簡介
歡迎來到我們「PCB 基礎知識」系列的第一篇文章,我們將從這裡啟程,探索印刷電路板(PCB)的基本面向,以及它們在現代電子領域中的關鍵角色。本文將深入探討 PCB 的重要性,揭示構成 PCB 的精密元件與結構,並介紹設計流程及其對 PCB 製造的深遠影響。 準備好深入 PCB 技術的核心,了解它如何驅動我們日常依賴的裝置。 PCB 在現代電子產品中的重要性: 在步調快速的現代電子世界中,PCB 對於實現已成為生活要角的裝置扮演著至關重要的角色。讓我們一探其重要性: 實現複雜功能:PCB 是電子裝置的骨架,可整合各種元件,實現我們所依賴的複雜功能。 提升效能與可靠度:透過精心設計佈局並最佳化電路,PCB 確保訊號流暢、將干擾降至最低,並提供可靠的效能,對今日要求嚴苛的電子系統至關重要。 簡化製造流程:標準化的 PCB 設計與大量生產技術大幅降低製造成本,使電子裝置更易普及。 實現空間最佳化:多層 PCB 可同時實現複雜且精簡的設計,有效利用空間,促成時尚可攜電子裝置的開發。 說明 PCB 的基本元件與結構: 要了解 PCB 的內部運作,必須先熟悉其基本元件與結構: 基板材料:PCB 使用基板材料,例......
銅重量與走線寬度:找到最佳平衡
在印刷電路板(PCB)設計中,找到銅厚與線寬之間的最佳平衡至關重要。銅厚與線寬直接影響 PCB 的效能、可靠性與成本。不論您是電子愛好者、業餘玩家、工程師、學生或業界專業人士,理解兩者之間的平衡都是成功設計 PCB 的關鍵。 銅厚為何重要 銅厚指的是 PCB 上銅層的厚度,它決定了電流承載能力、散熱效果與整體耐用度。較高的銅厚可帶來更大的電流承載能力與更好的散熱,但也會提高製造成本,並在佈線與板密度上帶來挑戰。反之,較低的銅厚可降低成本,卻可能限制 PCB 的性能。 線寬的影響 線寬是 PCB 上導電銅路徑的寬度,會影響走線的電阻、電流承載能力與阻抗。較寬的走線可承載更大電流並降低電阻,而較窄的走線節省空間,卻可能限制電流。 讓我們透過一個例子,了解在尋找銅厚與線寬最佳平衡時,線寬所帶來的影響。 假設您正在設計一塊高頻 RF 電路板,需要精確的訊號傳輸與低阻抗。為達成此目標,您必須仔細選擇合適的線寬。 情境 1:窄線寬 在此情境下,假設線寬僅 0.15 mm。窄線寬可節省 PCB 空間,提高走線密度並允許更複雜的佈線。然而,在高頻訊號下,窄線寬會導致更高阻抗與訊號衰減;高阻抗可能引發訊號反射、損耗......
內層殘銅率如何影響 PCB 厚度與品質
在印刷電路板(PCB)製造中,精度對於維持品質與性能至關重要。其中一項顯著影響 PCB 品質的關鍵因素,就是內層的殘銅率。這個概念在多層板中尤其重要,因為銅分布的平衡會直接影響最終板厚。本文將探討內層殘銅率如何影響板厚,以及優化此比率對於確保 PCB 堅固可靠的重要性。 內層銅如何影響板厚 如圖所示,當內層銅覆蓋極少時,不論 PP(預浸)片的厚度如何,樹脂都必須均勻流動以填補層間空隙。待 PP 片冷卻固化後,樹脂體積縮小,導致整體 板厚 變薄。 殘銅率的重要性 那麼,內層到底該鋪多少銅,才能確保板厚不低於公差下限?這裡就必須談到「殘銅率」。殘銅率指的是內層銅線路圖形相對於整板表面積的百分比。 殘銅率=該層銅面積/整板總面積。 PP 片在多層壓合中的角色 在多層板壓合時,PP 片會被裁切並置於內層芯板與另一芯板之間,或芯板與銅箔之間。高溫高壓下 PP 的樹脂熔化,填滿芯板上無銅區域;冷卻後樹脂固化,將芯板與銅箔黏合為一體。 殘銅率過低的後果 若殘銅率過低,整體板厚將變薄,且層間銅分布不均可能導致板彎翹。 對於有 金手指 的板子尤其關鍵,因其厚度必須精準,才能確保插槽配合良好;板子過薄可能導致插入後鬆......
了解 PCB 板中 Coverlay 的重要性
引言: 在快速演進的電子領域中,印刷電路板(PCB)的重要性無與倫比。這些關鍵元件幾乎是所有電子設備的骨幹。其中一項能顯著提升 PCB 性能與壽命的重要特性就是覆蓋膜(coverlay)。本文將深入探討覆蓋膜在 PCB 中的角色、優勢與創新。 什麼是覆蓋膜? 覆蓋膜(coverlay),又稱保護膜,主要用於軟性 PCB。與傳統硬板使用的防焊層不同,覆蓋膜提供更優異的絕緣與保護。它由一層軟性介電薄膜(通常為聚醯亞胺)與膠黏劑層壓而成。 ⦁ 覆蓋膜在 PCB 中的角色 強化電路保護:覆蓋膜為精密電路提供堅固屏障,抵禦濕氣、灰塵與化學物質等環境因素,確保電子設備的長壽與可靠。 ⦁ 最佳電氣絕緣: 覆蓋膜的主要功能之一是提供優異的電氣絕緣,防止短路並維持訊號完整性,這對高頻應用至關重要。 ⦁ 熱管理: 先進覆蓋膜材料具備高耐熱性,有助於有效散熱,將電子元件產生的熱量導出,避免潛在損壞。 ⦁ 柔韌性與耐用性: 軟性 PCB 需要能在彎曲時仍保持結構完整的材料。覆蓋膜提供所需的柔韌與耐用,特別適合空間與外形受限的應用。 使用覆蓋膜的優點 提升耐用度:覆蓋膜提供堅固的保護屏障,增強 PCB 整體耐用性,尤其在設......
鋁基 PCB:革新電子產品的熱管理
簡介 在步調快速的電子產業中,有效管理熱能對於維持裝置的可靠性與效能至關重要。此領域的一大進展便是採用鋁基 PCB。鋁基 PCB 憑藉其卓越的導熱與散熱能力,已成為高功率應用的關鍵解決方案。本文探討鋁基 PCB 的優勢、應用與設計考量,說明其如何徹底改變熱管理技術。 鋁基 PCB 在熱管理中的角色 鋁基 PCB 正徹底改變電子裝置的散熱方式。相較於傳統 FR4 PCB,鋁基 PCB 提供更高的導熱率,可將關鍵元件的熱量有效散出。此強化的熱管理在高功率應用中不可或缺,因為過熱可能導致元件失效。鋁基板本身即為高效散熱片,大幅提升散熱效率,確保最佳熱效能。 鋁基 PCB 的結構包含導電層與鋁底座之間的薄介電層,此配置提升熱效率,使裝置能在更高性能下運作,而無熱損傷風險。此外,鋁基 PCB 的耐用性使其適用於需要機械穩定性與耐熱性的嚴苛應用。 使用鋁基 PCB 的優勢 鋁基 PCB 的主要優勢在於其卓越的熱管理能力。有效的散熱可讓電子元件維持在安全操作溫度,延長使用壽命並提升可靠性。此優點在 LED 照明、汽車與電力電子等產業尤為重要,這些領域常見高功率 PCB。 另一大優勢是成本效益。雖然鋁基 PCB ......