鋁基板如何提升導熱率
1 分鐘
隨著現代電子產品體積縮小且效能日益強大,散熱管理已成為電子設計中最重要的議題之一。印刷電路板(PCB)擁有各式各樣的芯材與材料。過去我們已經介紹過多種材料,但今天我們將重點放在「金屬基板」(MCPCB)。基礎 PCB 的散熱效能不佳,會導致電子裝置效能下降、壽命縮短,甚至可能導致災難性的失效。
與傳統的 FR-4 板材相比,鋁基板具有更好的導熱率,是一種高效的替代方案。本文將列出其不同的特性,並深入探討鋁基板的結構、優點、應用,以及它們如何提升導熱效能。
什麼是鋁基板?
鋁基板(Aluminum PCB)是一種以金屬為基底的印刷電路板,專為控制電路板中電力電子元件產生的熱量而設計。它使用鋁取代傳統的玻璃纖維(FR-4)作為基礎基板。鋁基板的基本結構如下:
1. 銅電路層:此層的主要功能是為 PCB 上的所有元件提供電氣連接。與標準的覆銅板(1 到 10 盎司)相比,所使用的銅層相對較厚。在為 PCB 詢價時,您可以選擇銅重(Copper Weight)。銅層越厚,其電流負載能力就越高。
2. 介電層(絕緣層):介電層即為絕緣層,厚度約為 50 至 200 μm。由於它扮演電氣隔離與熱傳導的角色,因此應具有較低的熱阻與較高的電氣信號絕緣性。
3. 金屬基底層(鋁):鋁基座由鋁基板組成,為 PCB 提供機械強度。但其主要用途是作為熱導體來散發熱量。
4. 鋁基保護膜層:這類薄膜是可選的。它具有保護作用,可防止金屬表面受到不必要的蝕刻與刮傷。
為什麼散熱管理在電子產品中如此重要
在電力轉換器、LED 和汽車電子等電子零件運作期間會產生熱量。如果這些熱量不迅速散發到周圍環境,周邊元件就會受熱。過度的熱量累積會縮短元件壽命並導致焊點疲勞。元件過熱可能會導致其燒毀,進而引燃 PCB 和整個電路。
鋁基板中的導熱效能
1. 鋁卓越的導熱率
透過並排比較兩種基板的特性可以看出:FR-4 的導熱率僅為 0.3 至 0.4 W/mK。另一方面,鋁的導熱率約為 205 W/mK。根據比較,傳統 FR-4 PCB 的熱阻為 5.50 × 10⁻⁴ °C/W,這比鋁基板高出近 30%,導致其散熱效率大幅降低。
2. 介電層的作用
儘管鋁本身具有高導熱率,但位於銅佈線與鋁之間的介電層對熱傳導有極大的幫助。在某些設計中,絕緣層的導熱率介於 1 W/mK 至 10 W/mK 之間。
熱阻公式:
較低的 Rth 值表示導熱效能更好。製造商透過優化介電材料並減少厚度,大幅提升了鋁基板的散熱表現。
鋁基板中的散熱與膨脹:
在熱移除方面,鋁基板的表現優於標準 FR4 PCB。例如:厚度為 1.6 mm 的鋁基板熱阻(TR)為每瓦 2-3 度;而相同厚度的 FR4 PCB 熱阻則在每瓦 22-25 度之間。熱膨脹係數也會因材料而異,由於鋁基板具有良好的散熱能力,因此不會有嚴重的熱脹冷縮問題。
鋁基板與傳統 FR-4 PCB 比較表:
鋁基板的應用
1. LED 照明:鋁基板常用於 LED 燈具和燈泡中,以控制高亮度 LED 產生的熱量。由於 PCB 基座可直接連接到最近的散熱片,因此在所有 LED 燈泡中都能看到它的蹤影。
2. 電力電子:用於功率需求較大或進行電壓/電流轉換的場合。例如:電源供應器、電壓調節器和轉換器。
3. 消費性電子產品:由於電子產品日益縮小,小型散熱片可能不再是最佳選擇。在這種情況下,金屬基板將是首選。消費性電子的應用包括電腦、行動裝置和 LCD 背光。
4. 醫療設備:MRI 掃描儀、手術燈和診斷儀器等精密電子設備必須始終保持在低溫狀態,鋁基板在此發揮關鍵作用。
結論
在元件發熱為主要問題的情況下,我們看到了鋁基板優於傳統方案的幾個原因。隨著對高功率和微型裝置需求的不斷增長,鋁基板已成為散熱管理的標準首選。它們在機械韌性和高導熱率方面均優於 FR4。然而,在電路運作時防止熱量進入還有其他技術,例如主動冷卻技術、散熱管及基本的 CPU 風扇。透過理解熱傳遞原理,工程師可以設計出耐用且高效的電子裝置。
持續學習
如何選擇 PCB 的厚度
首先,在電子產品的世界裡,PCB 常被稱為「心臟」,它將所有元件連接在一起,因此板厚成為這一關鍵零件的重要參數。PCB 厚度是否選用得當,直接影響最終電子產品的性能、穩定性與可靠度。 選擇 PCB 厚度的過程會受到多種因素影響,例如產品應用場景、板材材質與銅層數量。因此,在決定 PCB 厚度時,必須綜合考量這些因素。 不同 PCB 厚度的特性與應用 最常見的 PCB 厚度包括 0.4 mm、0.6 mm、0.8 mm、1.0 mm、1.2 mm、1.6 mm、2.0 mm。不同厚度的 PCB 對電路性能會產生不同影響。 超薄 PCB(0.6 mm 以下) 超薄 PCB 重量輕、柔軟且易彎折,適合對空間效率要求極高的產品,例如: 智慧型手機與平板電腦 穿戴式裝置 機器人 筆記型電腦 無人機 這些產品需要極薄極輕的 PCB,因此採用超薄厚度才能滿足需求。然而薄板的承載能力相對較弱,不適合需要承載較重元件的場景。 中薄 PCB(0.6–1.6 mm) 中薄 PCB 在厚度與承載能力之間取得良好平衡,適用於大多數電子產品,包括電腦主機板與家電控制板。中板的剛性與穩定性適中,可滿足大部分應用情境。與其他厚度......
PCB 銅箔灌注基礎
什麼是 PCB 設計中的銅箔灌注(Copper Pour)? 銅箔灌注是指在 PCB 的銅層中,將未使用的區域以實心銅面填滿的技術。這些銅面會連接到電源或接地網路,形成連續的導電路徑。銅箔灌注通常用於電源層與接地層,也可在特定用途下用於訊號層。 銅箔灌注的目的: 接地層:銅箔灌注可形成實心的接地層,為訊號提供低阻抗回流路徑,並降低電磁干擾(EMI)。 電源層:銅箔灌注可作為電源層,將電源均勻分佈於整個 PCB,減少壓降並提升電源穩定性。 散熱:銅箔灌注可作為散熱片,將高功率元件產生的熱量擴散並散發,防止過熱並確保 PCB 的可靠性。 銅箔灌注的優點: 提升訊號完整性:透過減少接地迴路、雜訊與干擾,銅箔灌注有助於維持訊號完整性並降低訊號衰減。 改善熱管理:銅箔灌注可增強散熱效果,防止熱點並確保元件在最佳溫度下運作。 節省銅材:有效利用銅箔灌注可減少額外走線需求,提高銅材使用效率,進而節省成本。 銅箔灌注的實作: 放置銅箔灌注代表將 PCB 上的空白區域以平面銅填滿。它們是PCB 設計的重要一環,所有主流 PCB 設計軟體都能自動放置。銅箔灌注可降低接地阻抗以提升 EMC、減少壓降以提高電源效率,並縮......
了解 PCB 使用的材料:選擇、類型與重要性
印刷電路板(PCB)是現代電子產品中不可或缺的元件。這些電路板連接並支撐電子元件,為電信號與電力的傳輸提供穩定的平台。典型的 PCB 由多層材料壓合而成,形成單一結構。 PCB 是電子製造流程中的關鍵一環,從消費性電子到汽車與航太應用皆可見其蹤影,對電子裝置的正常運作至關重要。 PCB 使用的材料種類 1. 基板 基板是 PCB 的基礎材料,作為其他材料沉積的基底。常見基板為玻璃纖維強化環氧樹脂,亦稱 FR-4。其他類型包括 CEM-1、CEM-3、聚醯亞胺(PI)與 Rogers。選擇基板時需考量工作溫度、介電強度與成本等需求。 挑選基板的常見指標包括: - 介電常數:介電常數衡量基板儲存電能的能力。數值過高可能導致訊號損失與干擾。 - Tg(玻璃轉移溫度):Tg 是基板由硬質轉為柔軟的溫度。高 Tg 適用於汽車與航太等高溫環境。 - CTE(熱膨脹係數):CTE 表示基板隨溫度變化而膨脹或收縮的程度。低 CTE 有助於在寬溫範圍內保持尺寸穩定。 - 吸濕性:吸濕基板可能在組裝與運作時出現分層等問題,因此低吸濕性為大多數應用所偏好。 2. 銅箔 銅箔用於在 PCB 表面形成導電線路,分為壓延銅箔......
厚銅 PCB:其優勢與應用概覽
印刷電路板(PCB)是現代電子產品的骨幹,提供電子元件連接與電氣訊號傳輸的平台。隨著高效能與高可靠度電子設備需求不斷提升,製造商持續尋求強化 PCB 整體性能與耐用度的方法。厚銅 PCB 是一種特殊類型的 PCB,相較於標準 PCB 具有多項優勢,其設計採用更厚的銅層,提供更高的載流能力、更佳的熱管理與更強的耐用性。本文將探討厚銅 PCB 在現代電子領域的優點與應用。 什麼是厚銅 PCB? 厚銅 PCB 是指銅層厚度高於標準 PCB 的設計。厚銅 PCB 的銅厚範圍從 3 oz 到 20 oz 甚至更高,而標準 PCB 通常僅 1 oz。更厚的銅層帶來更高的載流能力、更佳的熱管理與更強的耐用性,使其成為高功率應用的理想選擇。 厚銅 PCB 的優點 1. 高載流能力 厚銅 PCB 最顯著的優點之一,就是能夠承受流經銅層的高電流。更厚的銅層讓厚銅 PCB 在承載更大電流時不易過熱,也不會降低整體板件特性,因此特別適合需要大電流的電力電子應用。依銅厚與疊構設計,厚銅 PCB 可承載超過 30 A 的電流。 2. 強化熱管理 散熱是影響電子設備性能與可靠度的關鍵因素。厚銅 PCB 憑藉更厚的銅層,提供卓越......
FR4 PCB 深度指南:材料真相、真實規格與何時使用(或避免)它
FR-4 並非什麼神祕代碼,它字面意思就是 Flame Retardant(阻燃等級 4)。在 PCB 領域,FR-4 是 NEMA(美國電氣製造商協會)對玻璃纖維強化環氧樹脂層壓板的等級命名。簡單來說,它是以環氧樹脂含阻燃添加劑將玻璃纖維布黏合而成的複合材料。「FR」代表阻燃,但這並不等同於 UL94 V-0 認證,僅表示樹脂配方能在起火時自行熄滅。FR-4 於 1968 年由 NEMA 命名,憑藉其含溴阻燃環氧樹脂,取代了舊有的 G-10 等級。 NEMA FR-4 等級說明: NEMA LI-1 標準將 FR-4 定義為「工業用熱固性層壓製品」,自 1999 年起與軍規 MIL-I-24768 調和。因此,若板材要冠上 FR-4 名稱,就必須符合製造商規格所載的機械、熱與阻燃要求。其他等級如 FR-5、FR-6 仍存在,但 FR-4 已成業界標準。「FR-4」指的是經工程化設計、具抗燃特性的特定環氧/玻璃層壓材料,並不代表整塊板子「防火」。 環氧樹脂+玻璃纖維布+阻燃化學: FR-4 就是玻璃纖維與環氧樹脂的層層堆疊。固化後的綠色環氧樹脂中,可把玻璃纖維想像成 PCB 千層麵裡的「麵條」。樹......
金屬核心 PCB 材料:熱真相與設計規則
金屬核心 PCB(MCPCB)是一種特殊板材,以金屬基材取代標準 FR-4。這層金屬核心如同內建散熱片,可提升高功率電子的散熱能力。基本疊構很簡單: 頂層為銅導體層。 中間為薄介電絕緣層。 底部為厚金屬基板。 這種結構提供優異的 熱擴散 能力與便利的接地平面,但代價是板子比典型 FR-4 更重、更貴。MCPCB 廣泛用於 LED 照明與電源供應器等會產生大量熱的應用。本文將破解不同核心金屬的迷思,說明介電層如何真正控制熱流,並比較實際的熱導率數據。 「金屬核心 PCB 材料」的真正含義 金屬構成板的結構基礎,並充當巨型散熱片。銅層通常 1–3 oz,位於頂部承載電路走線;下方是薄介電層,一般 25–100 µm,用來將銅與金屬電氣隔離;最底層為金屬核心,通常是 1.0–3.2 mm 的鋁板,負責橫向散熱。 鋁的熱導率為 150–235 W/mK,銅則為 380–400 W/mK,兩者都比 FR-4(0.3 W/mK)快得多。 銅核心板聽起來很棒,但銅重且昂貴,因此幾乎所有 MCPCB 都改用鋁。鋼核心 PCB 存在,用於機械強度或 EMI 屏蔽,但熱性能差很多。金屬核心提供機械支撐並自然成為接地/......