如何實現完美的 PCB 焊接:物理原理、製程與最佳實務
1 分鐘
焊接常被誤解為只是將兩塊金屬表面「黏」在一起。實際上,PCB 焊接是一個複雜的物理化學過程,受熱力學、表面能與冶金學共同支配。
對 PCB 設計工程師與硬體新創來說,掌握可靠焊點背後的科學,往往是原型在現場失效與產品順利量產的關鍵分水嶺。
在原型階段,工程師經常依靠手動焊接快速迭代與除錯。然而,對於高可靠性電子產品,唯有透過受控的工業製程(如表面貼裝技術 SMT)才能獲得一致結果。JLCPCB 以工業級 SMT 組裝服務彌補這段差距,消除人為變異,同時維持量產水準的品質。
話雖如此,每位工程師仍須扎實理解 PCB 焊接基礎。了解焊點如何形成——以及為何失效——才能做出更好的可製化設計 (DFM)、提升良率,並在整個產品生命週期中高效排除組裝問題。
完美 PCB 焊接的物理基礎:潤濕與介金屬化合物
要形成可靠焊點,必須發生兩項基本物理事件:潤濕與介金屬化合物 (IMC) 的生成。
1. 潤濕角 (𝜽)
潤濕指的是液態焊料如何在固體表面(PCB 焊墊與元件引腳)上鋪展,其行為由表面張力競爭決定。
● 良好潤濕 (𝜽 < 90°):焊料完全鋪展,形成平滑凹形焊腳。這表示焊墊表面能高(銅面潔淨)且焊料表面張力低(助焊劑協助)。
● 潤濕不良 (𝜽 > 90°):焊料成珠狀,如同水珠在打蠟表面。此凸形通常因氧化或熱量不足,代表焊點強度弱。
2. 介金屬化合物 (IMC) 生成
焊接是一連串化學反應。當熔融錫 (Sn) 接觸銅 (Cu) 時,會溶解少量銅形成新合金層,通常為 Cu₆Sn₅。
● 「恰到好處」區間:唯有維持 1–3µm 厚的 IMC 層才能形成焊點。缺點是若持續加熱,IMC 會過度生長變脆,成為振動下的斷裂點。
● 助焊劑角色:熔融焊料無法潤濕氧化銅。助焊劑作為還原劑,在高溫下剝除氧化物,使活性金屬裸露以利 IMC 形成。
PCB 焊點剖面圖
工業級 PCB 焊接方法:回焊與波峰焊
儘管原型仍會用到手焊,JLCPCB 的 SMT 組裝服務 採用全自動化製程,確保大量生產中焊點品質一致。
回焊焊—SMT 組裝標準
回焊焊 先在焊墊上印刷焊膏,再置件,最後將整板通過溫控精準的對流烤箱。
溫度曲線:四個關鍵區
1. 預熱(室溫至約 150°C):蒸發溶劑並緩慢加熱 PCB 避免熱衝擊。升溫過快 (>3°C/s) 會導致元件龜裂。
2. 浸潤(150°C 至約 180°C):使整板達到熱平衡,助焊劑在此活化並清除氧化物。
3. 回焊(液相線以上時間 TAL):焊料達到最高熔點(SAC305 約 245°C)並完全熔化。
4. 冷卻:快速冷卻可形成細晶粒結構,帶來優異機械強度。
SAC305 無鉛焊料標準 SMT 回焊溫度曲線
波峰焊 – 插件 (THT) 焊接
用於插件技術 (THT)。PCB 行經熔融焊料噴泉。
限制:背面若有 SMT 零件需先點膠固定。現今設計師常改用選擇性焊接,避免 SMD 元件受熱衝擊。
比較:回焊 vs. 波峰焊
| 特性 | 回焊焊 | 波峰焊 |
|---|---|---|
| 主要應用 | 表面貼裝元件 (SMD) | 插件元件 (THT) |
| 焊料來源 | 焊膏(鋼網印刷) | 熔融焊錫槽 |
| 熱應力 | 受控、漸進曲線 | 潛在高熱衝擊 |
| JLCPCB 服務 | 標準 SMT 組裝 | 後製 THT 選項 |
原型與維修用的手焊技巧
每位工程師都需要手焊技能做研發。焊接物理不變,只是改用烙鐵加熱。
1. 烙鐵的熱力學
熱回復:350°C 的細尖烙鐵一碰到接地層可能瞬間掉到 200°C。你需要高熱容量/回復的烙鐵,而非僅高溫。
建議:
● Sn63Pb37(含鉛):約 315°C – 340°C。
● SAC305(無鉛):350°C – 375°C。切勿超過 400°C。
2. 熱橋技巧解析
利用熔融焊料改善熱耦合(「熱橋」技巧)
問題:乾烙鐵尖與引腳/焊墊接觸面積極小。
解決:先給烙鐵尖點一小滴新焊料,液態焊料填滿空隙,形成 熱橋,立即傳熱。
焊接熱橋技巧,展示如何在烙鐵尖加少量熔融焊料以改善對 PCB 焊墊的熱傳導。
3. 三步手焊流程
加熱:烙鐵同時接觸焊墊與引腳(1 秒)。
送錫:焊絲送入接點(而非烙鐵)。
移開:先移開焊絲,再移開烙鐵。
三步手焊流程
烙鐵頭選擇
| 烙鐵頭形狀 | 理想應用 | 熱傳導能力 |
|---|---|---|
| 圓錐 | 極細間距 (<0402) | 低(接地層效果差) |
| 鑿形 | 通用、插件 | 高(接觸面積大) |
| 斜面/蹄形 | 拖焊 IC | 高(可含焊料) |
| 刀形 | 維修/清理焊墊 | 中等 |
實現完美焊接的材料選擇
材料決定製程窗口。
● SAC305(無鉛):業界最常見(Sn-Ag-Cu),熔點約 217°C,焊點外觀較含鉛黯淡且顆粒感明顯。
● Sn63Pb37(含鉛):共晶(183°C 熔點),因潤濕性佳多用於原型,但多數商業產品因 RoHS 禁用。
表面處理:
● HASL:低成本、耐用,但表面粗糙,不適細間距。
● ENIG:鎳金鍍層,極度平整,BGA/QFN 必備。
● JLCPCB 提示:凡間距 <0.5mm 的設計,選 ENIG 以確保共面性。
深入了解:比較 PCB 的 HASL 與 ENIG 表面處理
可組裝設計 (DFA):為完美焊接設計 PCB
完美焊接從 CAD 開始。
● 熱隔離:切勿將焊墊直接連接地平面,否則會形成散熱片導致焊料無法熔化。使用熱隔離輻條兼顧電氣連接與隔熱。
● 鋼網開口:JLCPCB 採用最高階 LPKF 雷射鋼網,細間距元件開口通常縮小至焊墊的 85–90%,避免橋接。
● 焊墊定義 (NSMD):BGA 建議採非防焊層定義 (NSMD) 焊墊(防焊開口 > 銅墊),讓焊料可包裹銅墊邊緣,增強抓附力。
PCB 佈線比較:元件焊墊直接接地與使用熱隔離輻條避免散熱的差異。
常見 PCB 焊接缺陷與預防
1. 冷焊:焊點黯淡不平,因熱量不足或冷卻時晃動。
2. 立碑:元件一端翹起,因兩焊墊潤濕力不均(一側升溫較快)。
3. 橋接:兩引腳被焊料相連,因焊膏過多或防焊壩不足。
4. 氣孔:焊點內部氣泡,因助焊劑排氣不良(浸潤時間不足)。
完美凹形焊腳與常見缺陷(冷焊、立碑)比較。
高階焊接技術與可靠性考量
選擇性焊接與維修:
混裝板可用選擇性焊接,以程式化迷你噴嘴針對特定插件腳焊接,避免鄰近 SMD 受熱。維修 BGA 時,整板最多回焊 3 次,以防 FR4 劣化與脆性 IMC 過度生長。
RoHS 與助焊劑殘留:
● RoHS 合規:歐盟指令強制多數電子設備使用無鉛 (SAC305),合規已成必要。
● 助焊劑清洗:「免洗」助焊劑殘留惰性,但高可靠性(Class 3)航太/醫療板常採水洗助焊劑並自動清洗,徹底去除腐蝕性殘留。
高可靠性 PCB 焊接的品質控制與檢驗
現代高密度板僅靠目視檢查已不足。
● 自動光學檢測 (AOI):攝影機掃描缺件、極性錯誤與橋接。JLCPCB 所有 SMT 訂單皆經 AOI。
● X-Ray 檢測:唯一能看見 BGA/QFN 底部的方式。X 光可量測氣孔率(IPC 限值 <25%)與「枕頭效應」缺陷。
BGA X-Ray 檢測,區分良好焊球與氣孔/橋接。
結論
高品質 PCB 焊接是物理與製程控制的結合。實驗室必備的「熱橋」技巧,到了量產端則仰賴精準的熱曲線與自動化檢測。
JLCPCB 以先進 AOI、X-Ray 與製程,提供可靠品質。不論原型或量產,掌握這些原則都能讓硬體一次到位。
準備量產?上傳您的 Gerber 檔案至 JLCPCB,享受高可靠性 SMT 組裝。
PCB 焊接常見問題
Q1:無鉛 PCB 烙鐵溫度應設多少?
SAC305 等合金建議 350°C–375°C。雖然熔點約 217°C,額外熱量用於補償板子散熱並確保接地焊墊的熱回復。注意這是烙鐵尖溫度,接點實際低 30–50°C。超過 400°C 會損壞焊墊並燒毀助焊劑。
Q2:為何需要助焊劑?
助焊劑有三重作用:化學清潔金屬表面(還原反應去除氧化物)、高溫下防止再氧化、降低表面張力使焊料能順利潤濕焊墊。無助焊劑時,焊料會在氧化銅上成珠,無法形成所需介金屬化合物。
Q3:回焊與波峰焊差異?
回焊使用焊膏與對流烤箱,依四區溫控曲線焊接 SMT 元件;熱源為循環熱風。波峰焊讓 PCB 通過熔融焊料噴泉,主要用於插件 (THT)。回焊對細間距控制更佳,波峰焊則高效處理連接器與功率元件。
Q4:可以結合手焊與 JLCPCB SMT 服務嗎?
當然可以,這是常見且省成本的流程。先由 JLCPCB 自動焊接所有複雜 SMT(BGA、細間距 IC、0402 被動件),再於實驗室手焊插件連接器或非標準元件。如此可省去簡單插件件的工具成本,同時確保精度。
Q5:如何防止小 SMT 元件立碑?
立碑是因回焊時兩焊墊升溫不均,產生不同潤濕力。可透過對稱熱連接、平衡走線寬度、調整浸潤區使整板熱平衡,以及使用適量焊膏來避免。SAC305 較寬的塑性區也有助均衡潤濕力,降低立碑機率。
持續學習
在 PCB 製造流程中使用助焊劑的隱藏優勢
在PCB 製造領域,助焊劑常被忽略,卻扮演關鍵角色。本完整指南旨在揭示助焊劑的重要性與諸多優點。無論您是設計師還是製造商,了解助焊劑的價值都能優化 PCB 製程,產出更高品質的電路板。 什麼是助焊劑 助焊劑是電子焊接過程中的關鍵材料,主要功能是促進焊接。其成分通常包含松香、有機酸與活化劑。加熱時,助焊劑會清潔 PCB 與元件表面,去除氧化層與污染物,並促進熔融焊料的潤濕與擴散,確保良好附著。助焊劑有液態、膏狀或粉狀,可在焊接前與焊接中使用。 助焊劑的功能: 清潔 PCB 助焊劑可去除 PCB 與元件表面的氧化層、灰塵或其他污染物。 強化電子元件的結合力 助焊劑能在焊料與 PCB 及元件表面之間建立強固可靠的結合。 防止雜質與焊點反應 助焊劑可阻止氧化物等雜質與焊點反應,避免結合弱化或產生缺陷。 防止氧化 助焊劑能隔絕空氣,防止金屬表面在焊接過程中氧化。 提升焊料潤濕性 助焊劑降低焊料表面張力,使其更容易流動並潤濕待焊表面。 助焊劑的種類 市面上有多種助焊劑,各有特定優勢。常見類型包括松香助焊劑、水洗助焊劑、免洗助焊劑與含銀助焊劑。選擇時需考量組裝流程、材料相容性及殘留清除需求。以下介紹三大主要類型......
焊盤設計解析:IPC 標準、DFM 選擇與焊點可靠性
在現代電子設計中,工程師絕大多數時間都投注在數位領域——完善電路圖、模擬邏輯、撰寫韌體。然而,所有數位層面的完美,都可能因為一個肉眼幾乎看不見的實體失效而化為烏有:焊點。決定焊點可靠性的最關鍵因素,並非元件或焊錫膏,而是那個不起眼、常被忽略的銅焊墊。 實體介面正是再完美的電路圖在量產時通常會失敗的地方。焊墊是實體電路真正且必要的基礎,作為橋樑,把數位設計連接到製造的類比實體世界。 本文將超越簡單定義,深入探討焊墊的幾何形狀、尺寸、外形,以及相對於防焊層與元件的位置——這仍是可製造性設計(DFM)中最重要的一環。這些幾何參數主要決定了您印刷電路板組裝(PCBA)的電氣與機械特性,以及散熱能力。 什麼是焊墊?為何焊墊幾何形狀直接影響焊點可靠性 為求清晰,我們將使用常見術語「焊墊」。然而必須強調 IPC 標準用語:SMT 元件佔用的銅區域稱為「land」,而元件的完整 land 集合則稱為「land pattern」。 一般工程用法中,「pad」與「land」常互換使用,而「footprint」則指整個 land pattern。 完美的焊點是凝固焊錫形成的精確凹面 meniscus,能「潤濕」元件引腳......
如何實現完美的 PCB 焊接:物理原理、製程與最佳實務
焊接常被誤解為只是將兩塊金屬表面「黏」在一起。實際上,PCB 焊接是一個複雜的物理化學過程,受熱力學、表面能與冶金學共同支配。 對 PCB 設計工程師與硬體新創來說,掌握可靠焊點背後的科學,往往是原型在現場失效與產品順利量產的關鍵分水嶺。 在原型階段,工程師經常依靠手動焊接快速迭代與除錯。然而,對於高可靠性電子產品,唯有透過受控的工業製程(如表面貼裝技術 SMT)才能獲得一致結果。JLCPCB 以工業級 SMT 組裝服務彌補這段差距,消除人為變異,同時維持量產水準的品質。 話雖如此,每位工程師仍須扎實理解 PCB 焊接基礎。了解焊點如何形成——以及為何失效——才能做出更好的可製化設計 (DFM)、提升良率,並在整個產品生命週期中高效排除組裝問題。 完美 PCB 焊接的物理基礎:潤濕與介金屬化合物 要形成可靠焊點,必須發生兩項基本物理事件:潤濕與介金屬化合物 (IMC) 的生成。 1. 潤濕角 (𝜽) 潤濕指的是液態焊料如何在固體表面(PCB 焊墊與元件引腳)上鋪展,其行為由表面張力競爭決定。 ● 良好潤濕 (𝜽 < 90°):焊料完全鋪展,形成平滑凹形焊腳。這表示焊墊表面能高(銅面潔淨)且焊料......
回流焊接:你需要知道的一切
回流焊接是當今表面貼裝技術(SMT)中的關鍵製程,能將從最小的 0201 被動元件到複雜的高密度球柵陣列(BGA)牢牢固定。隨著元件尺寸持續縮小,精準的熱管理已成為可靠性的關鍵要求,這意味著製程必須零失誤。 本工程指南深入剖析製程背後的熱力學、流體力學與冶金學。我們將涵蓋溫度曲線的四個關鍵溫區、對流熱傳導機制,以及預防裂紋電容或熱焊盤空洞等潛在失效的先進策略。 為了實現高可靠性焊接,高精度設備必不可少。JLCPCB 採用先進的 10 溫區對流回流爐,嚴格控制溫度。這項能力使我們能成功處理航太與醫療等產業的複雜 PCBA 專案,持續達到零缺陷標準。 現代多溫區對流回流爐 什麼是回流焊接? 簡單來說,回流焊接是一種利用焊膏——由焊料合金粉末與助焊劑混合而成的黏性物質——暫時固定電子元件,再將整個組件送入受控熱處理流程的方法。這段加熱使焊料熔化,從而形成永久的機電結合。 不同於焊料來源為熔融焊料槽的波峰焊接,回流焊接依賴已預先塗佈在板上的材料。製程由相變定義: 1. 固態/黏彈態:焊膏在貼裝時固定元件。 2. 液態:合金達到液相線溫度 (TL),聚結並潤濕金屬表面。 3. 固態:合金冷卻,形成決定機械強......
選擇性焊接:混裝技術 PCB 組裝的先進製程控制
印刷電路板組裝的演變帶來了許多意想不到的複雜情況,使得現代電子產品必須同時兼顧兩全其美:既要享有 SMT(表面黏著技術)的微型化優勢,又要保有穿孔元件的機械強度。這種局面讓選擇性焊接成為處理混合技術組裝的製造商不可或缺的製程。 選擇性焊接是一種精準製程,僅在特定穿孔位置施加焊料,同時保護板上已經存在且對熱敏感的 SMT 元件,避免像傳統波峰焊那樣讓整個板面暴露於焊料中。 什麼是選擇性焊接?混合技術 PCB 的技術概覽 選擇性焊接是一種利用可程式化焊料噴泉或微型焊料波,以局部方式將穿孔元件引腳與 PCB 銅墊結合的技術。整個操作透過 X-Y-Z 軸定位完成,僅在所需點施加熔融焊料,而非讓整片板子暴露於高溫。 這種針對性做法對於混合技術組裝至關重要,因為 SMT 元件(特別是 BGA、QFN 與細間距 IC)與穿孔連接器、功率元件、屏蔽電感及機電裝置共存於同一板面。傳統波峰焊會讓這些對溫度敏感的 SMT 元件承受過大熱應力,可能導致封裝分層、焊點龜裂或超出濕敏等級(MSL)規範。 選擇性焊接採用的焊料波高度通常介於 2 至 5 mm,而波峰焊的波高則為 8 至 12 mm。焊料噴嘴形狀多樣,從單點尖端......
如何使用錫膏:鋼板、針筒和烙鐵的使用方法
錫膏使用指南:核心要點 ● 錫膏必須在放置元件之前塗佈,並按照受控的加熱曲線進行回流焊。 ● 大多數 SMT 缺陷是由錫膏量不正確、儲存不當或加熱程序錯誤引起的。 ● 鋼網印刷(Stencil printing)能提供最一致且可靠的結果。 ● 手動方法(針筒或烙鐵)僅適用於低密度電路或維修工作。 錫膏是現代電子組裝的基石。簡單來說,它是微小焊球與助焊劑混合而成的膏狀物,具有奶油般的稠度。與傳統焊錫絲不同,錫膏是在放置零件之前塗佈的,在熔化形成永久電氣接頭之前,它能起到臨時黏合劑的作用。 正確使用錫膏至關重要,因為大多數 SMT 缺陷(如橋接、冷焊和元件位移)都是由於錫膏量不正確或處理不當造成的。JLCPCB 使用自動噴印機和 3D SPI(錫膏檢測)來確保塗佈完美。 在鋼板上塗抹錫膏 了解更多:錫膏與助焊劑的角色區別 開始之前:如何選擇與準備錫膏 在擠壓針筒之前,請確保您擁有正確的材料並已準備就緒。 如何選擇正確的錫膏 並非所有錫膏都相同。對於一般 SMT 工作,SAC305 (Sn96.5/Ag3.0/Cu0.5) 是無鉛組裝的工業標準。如果您正在進行需要較低溫度的維修工作,有鉛錫膏 (Sn63......