關於 PCB 組裝中的 BGA 技術,您需要知道的一切
1 分鐘
BGA,全稱 Ball Grid Array,是一種應用於 SMT 組裝的先進封裝技術。它是電子技術領域的一項重大成就,反映了封裝技術的顯著進步。
BGA 封裝表面具有大量球形凸點,提供眾多互連點,實現高密度封裝目標。
1. 什麼是 PCB 板上的球柵陣列(BGA)?
BGA 積體電路是無引腳的 SMD 元件,取而代之的是焊球陣列,這些金屬球陣列分布在 PCB 上。BGA 焊球透過 PCB 封裝板底部的層壓基板固定在 PCB 上。
金屬走線將晶片連接路由至焊球。與扁平封裝和雙列直插封裝相比,BGA-PCB 封裝可提供更多的 I/O 連接。
由於矽晶片到焊球的連接更短,BGA IC 展現出更高的效率與高速性能。憑藉其短引腳長度與寬裕的引腳間距,BGA 封裝成為高密度電路高速 PCB 產品的理想解決方案。
BGA 在 PCB 上的堆疊製程:
PoP:PoP(Package on Package)用於將 BGA 的 IC 與元件堆疊在指定封裝上。此製程可高效地將多個 IC 堆疊於單一封裝內,例如將記憶體/邏輯元件與處理器封裝在一起。
2. BGA 封裝有哪些類型?
- PBGA:塑封 BGA,採用塑膠包覆本體、玻璃混合層壓基板與蝕刻銅走線。焊球間距:1.0 mm、1.27 mm。2–4 層有機板。
- FlipChip BGA:採用硬質多層基板。
- CBGA:陶瓷 BGA,採用陶瓷基板與 FlipChip(FC)電氣連接。
- CDPBGA:腔體向下 PBGA,晶片區域具有方形凹陷,稱為腔體區。
- TBGA:帶式 BGA,採用 1–2 層軟性帶狀基板,亦稱 Flex Tape BGA。
- H-PBGA:高散熱 BGA。
3. BGA 的優缺點
BGA 的優點:
- 板子尺寸小。
- 電氣實現高效。
- 高散熱能力。
- 高效率與高可靠性。
- 成本友善。
BGA 的缺點:
- 焊接後檢測困難。
- 需高度謹慎且困難的重工。
- BGA 元件對環境變化高度敏感。
- 需靜電防護與高規格儲存維護。
4. BGA 的關鍵特性
- 因 PoP 堆疊而具備高互連密度並降低板子複雜度。
- 成本友善的製程。
- 低熱阻防止晶片過熱。
- 低電感。
- 佔用板面空間小。
5. BGA 在 PCB 組裝中的應用
球柵陣列(BGA)技術已成為現代 PCB 組裝的基石,特別適用於需要高可靠性與緊湊設計的產品。與傳統有引腳封裝相比,BGA 可在更小面積內提供更多 I/O 連接,是當今高密度電子系統的關鍵選擇。
BGA 貼裝的 SMT 要求
要成功組裝 BGA,製造商必須遵循嚴格的表面貼裝技術(SMT)要求:
- 鋼網設計與焊膏選擇:鋼網開口尺寸與焊膏黏度直接影響焊點品質。均勻的焊膏沉積對避免橋接或空洞至關重要。
- 貼裝精度:BGA 封裝對貼裝精度要求更高,偏移可能導致隱藏的焊接缺陷。
- 回焊溫度曲線控制:優化的回焊爐溫度曲線可確保焊球良好潤濕,同時避免過熱損壞封裝或 PCB。
BGA 技術的典型應用
BGA 封裝廣泛應用於對空間效率與訊號完整性要求高的產業:
- 高密度主機板:筆電、伺服器與遊戲機依賴 BGA 封裝的處理器、晶片組與記憶體模組。
- 通訊設備:路由器、基地台與網路交換器使用 BGA 元件進行高速訊號處理。
- 消費性電子:智慧型手機、平板與穿戴裝置受益於 BGA 的緊湊尺寸與更佳散熱性能。
BGA 組裝的關鍵考量
工程師在 PCB 設計與組裝過程中必須解決多項挑戰,以確保 BGA 焊點的長期可靠性:
- PCB 佈線密度:適當的焊墊設計與導孔擺放對 BGA 焊球的逃線路由至關重要。
- 焊球間距:更細的間距提高 I/O 密度,但也增加製造複雜度。
- 熱管理:高功耗 BGA 需透過散熱導孔與足夠銅面有效散熱。
透過理解這些應用需求與設計考量,工程師可充分發揮 BGA 技術的優勢,同時降低組裝風險。
6. BGA 檢測技術
BGA 封裝的檢測因焊球位置而具挑戰性,傳統光學方法無法檢測缺陷。為提高準確度,在採用 BGA 的 SMT 組裝中,常結合電性測試、邊界掃描檢測與自動 X 光檢測。
1. 電性測試:傳統方法,可識別開路與短路缺陷。
2. 邊界掃描檢測:利用邊界掃描設計的測試埠,逐一存取邊界連接器上的每個焊點,檢測元件開路與短路。
3. 自動 X 光檢測:
自動 X 光檢測可檢視元件下方的焊點,揭示 AOI 無法看到的空洞與氣泡等隱藏缺陷。常見 BGA 缺陷包括偏移、鬆動焊料、開路、冷焊、橋接短路、空腔、缺失/掉落焊球及尺寸不規則。
7. 如何修復 BGA 缺陷
拆下元件:可透過先將 BGA 元件從電路板上拆下來修復故障。方法是對板上的局部區域謹慎加熱,使焊點熔化,即可更換元件並重新建立焊點連接。
BGA 重工流程:BGA 重工在專用重工站進行,使用紅外線加熱器加熱 BGA-PCB 元件。熱量等級可由熱電偶監控。利用真空裝置及其他設備將封裝從底板上抬起。
局部加熱:加熱過程非常謹慎,僅限於板上的缺陷區域。局部加熱可確保鄰近元件的安全。
JLCPCB BGA 技術
JLCPCB是公認值得信賴的 PCB 製造與組裝服務供應商,將 BGA 生產作為其綜合服務組合的關鍵項目。其專長在於生產與組裝採用 BGA 封裝的 PCB。BGA 封裝以先進的焊球網格實現高密度互連。JLCPCB 在出貨前為 BGA-PCB 產品提供高效率的測試與檢驗系統。
JLCPCB 的 BGA 生產服務專為滿足當代電子需求而設計,確保客戶將 BGA 整合至 PCB 設計的各種需求都能以最高精度與品質達成。
持續學習
PCB 設計中的電容器:所有類型的完整指南
電容器是 PCB(印刷電路板)設計中不可或缺的元件,從儲能、濾除雜訊到穩壓,功能多元。不論是設計簡單電路或複雜多層板,了解不同類型的電容器及其應用都至關重要。電容器的基本結構由兩片金屬板中間夾一層介電質組成,可分為固定與可變兩種。 電容器儲存電荷的能力稱為電容,單位為法拉。與電阻相同,電容器可串聯或並聯,以改變總電容值。電子電路已發展出多種電容器類型。本完整指南將探討電容器在 PCB 設計中的角色、介紹各種類型,並說明如何為專案挑選合適元件。查看 PC 上所需的其他元件類型B。 什麼是電容器及其工作原理? 電容器是被動電子元件,以電場形式儲存與釋放電能。它由兩片導電板中間隔絕一層稱為介電質的絕緣材料構成。施加電壓時,導電板會儲存電荷,兩板電荷互補。電容器在電路中扮演多重角色,其端子由金屬板引出以供外部連接。 此結構的電容可由下列公式表示: C = εA / D 其中: ε 為介電常數,單位 C 為電容,單位法拉 D 為兩板間距離 A 為兩板重疊面積 電容亦為電荷 (Q) 與電壓 (V) 之比,數學式如下: C = Q / V 其中: C 為電容,單位法拉 Q 為板上的累積電荷 V 為施加於電容器之......
關於 PCB 組裝中的 BGA 技術,您需要知道的一切
BGA,全稱 Ball Grid Array,是一種應用於 SMT 組裝的先進封裝技術。它是電子技術領域的一項重大成就,反映了封裝技術的顯著進步。 BGA 封裝表面具有大量球形凸點,提供眾多互連點,實現高密度封裝目標。 1. 什麼是 PCB 板上的球柵陣列(BGA)? BGA 積體電路是無引腳的 SMD 元件,取而代之的是焊球陣列,這些金屬球陣列分布在 PCB 上。BGA 焊球透過 PCB 封裝板底部的層壓基板固定在 PCB 上。 金屬走線將晶片連接路由至焊球。與扁平封裝和雙列直插封裝相比,BGA-PCB 封裝可提供更多的 I/O 連接。 由於矽晶片到焊球的連接更短,BGA IC 展現出更高的效率與高速性能。憑藉其短引腳長度與寬裕的引腳間距,BGA 封裝成為高密度電路高速 PCB 產品的理想解決方案。 BGA 在 PCB 上的堆疊製程: PoP:PoP(Package on Package)用於將 BGA 的 IC 與元件堆疊在指定封裝上。此製程可高效地將多個 IC 堆疊於單一封裝內,例如將記憶體/邏輯元件與處理器封裝在一起。 2. BGA 封裝有哪些類型? PBGA:塑封 BGA,採用塑膠包覆本......
了解 PCB 連接器類型及其在電子產品中的應用
連接器是電子元件,用於連接不同的電子設備、電路或系統。它們有各種形狀和尺寸,可依據多種標準進行分類,其中一種就是依照應用來分類。以下是依照應用分類的幾種連接器類型: 依應用分類的連接器: 音訊與視訊連接器: 音訊與視訊連接器用於連接揚聲器、麥克風、攝影機與電視等設備。常見範例包括 RCA 連接器、HDMI 連接器與 3.5 mm 音訊插孔。 電源連接器: 電源連接器用於將電子設備連接到電源。範例包括 AC 電源線與 DC 電源插座。 PCB 連接器: PCB 連接器用於在印刷電路板上連接不同電子元件,也可連接不同電路板。範例包括板對板連接器、線對板連接器、線對線連接器與 PCB 邊緣連接器。 資料連接器: 資料連接器用於在電子設備間傳輸資料。範例包括 USB 連接器、乙太網路連接器與序列埠連接器。 光纖連接器: 光纖連接器用於連接以光訊號長距離傳輸資料的設備。範例包括 ST、SC 與 LC 連接器。 RF 連接器: RF 連接器用於連接發射或接收高頻訊號的電子設備。範例包括 SMA、BNC 與 TNC 連接器。 汽車連接器: 汽車連接器用於車輛內各種電子設備與系統的連接。範例包括電池連接器、音訊連......
SMD 電容代碼:識別、標記與極性
辨識 SMD 電容代碼是一項獨特且常令人困惑的挑戰。與那些具有清晰、標準化標籤的元件不同,電容的標記方式完全取決於其類型,而且在大多數情況下,根本沒有任何標記。 作為儲存電荷的基礎元件,電容對於嵌入式系統的每個部分都不可或缺,從濾除電源雜訊(去耦)、設定振盪器時序,到在 IC 之間耦合訊號。正確辨識它們是除錯與維修的關鍵技能。 本指南提供一套循序漸進的方法,協助你辨識電路板上的任何 SMD 電容。 什麼是 SMD 電容代碼?為何重要? 與單一簡單標準不同,「SMD 電容代碼」是一組依電容類型與尺寸而異的標記系統。它可能是 3 位數、一個字母、一條極性條,或最常見的——完全沒有標記。 理解這些不同代碼對工程各階段都至關重要: ● 安全與可靠度:對於極性電容(如鉭質電容),讀取極性標記是最重要的步驟。反向安裝可能導致失效、短路,甚至造成電路板災難性損壞。 ● 電路功能與除錯:數值代碼(例如 106 代表 10µF)讓工程師能確認正確零件是否安裝在正確位置。將 1µF 定時電容誤認為 10µF 儲能電容會導致電路失效。 ● 設計完整性:MLCC 上沒有代碼本身就是一種「代碼」——它告訴你關鍵參數如額定電......
電容器極性詳解:如何辨識、讀取標記並避免反向失效
在現代電子產品中,電路板上充斥著非極性元件,如 MLCC(多層陶瓷電容)。然而,對於任何需要在小體積內實現高電容的應用——例如電源濾波或 DC-DC 轉換器——工程師無一例外地會選用極性電容。這些元件,即鋁電解電容與鉭電容,是電源完整性的主力。 但它們有一條關鍵且不可妥協的規則:必須以正確方向安裝。 一顆簡單的反向電容是電子組裝中最常見且最具災難性的錯誤之一。這個小錯誤可能讓一塊十層、高密度的原型瞬間變成昂貴的紙鎮,甚至更糟——成為火災隱患。 電容極性的物理原理:為何某些電容有極性? 電解或鉭電容的極性並非為了方便而設計,而是其高電容結構的必然結果。 為了實現如此高的電容體積比,這些電容採用不對稱設計,其介電(絕緣)層薄得幾乎無法察覺。 鋁電解電容為何有極性 我們來看標準鋁電解電容。其結構由兩片蝕刻鋁箔浸於液態或固態聚合物電解質中組成。 1. 介電層:關鍵在於此。介電層並非像薄膜電容那樣是獨立材料,而是透過陽極氧化(anodization)這一電化學過程,直接在陽極(正極)鋁箔上長出一層氧化鋁(Al₂O₃)。這層氧化物極薄——通常僅奈米級——這正是高電容的來源(因為 C ∝ 1/d,d 為介電厚度......
7 種 BGA 封裝類型詳解:設計、組裝與應用
重點摘要:BGA 封裝類型 ● BGA 封裝可在 HDI PCB 上實現高 I/O 密度並提升電氣效能。 ● 不同 BGA 類型分別針對成本、熱效能、訊號完整性或可靠性進行最佳化。 ● 選錯 BGA 封裝可能導致回焊缺陷、熱失效或 SI/PI 問題。 ● 封裝選擇必須與 PCB 疊構、回焊曲線及應用環境相匹配。 球柵陣列(BGA)封裝對 高密度互連(HDI)設計 產生了深遠影響。與傳統引線框架封裝(如 QFP、SOIC)不同,BGA 不受周邊間距與引線共面性限制,而是將整個封裝底部用於 I/O 佈線。BGA 封裝的熱、電、機械特性使其能夠妥善管理現代 FPGA、處理器與記憶體晶片的高接腳數。 因此,使用 JLCPCB PCB 組裝服務 的設計人員必須徹底了解 BGA 封裝的熱機械特性與組裝物理,才能最佳化訊號完整性(SI)與電源完整性(PI)。 安裝於高密度互連 PCB 上的球柵陣列(BGA)封裝巨觀視圖。 了解 BGA 封裝 在深入探討不同 BGA 封裝類型之前,必須先清楚了解其基本架構。核心 BGA 由五大元件組成:基板(有機或陶瓷)、晶片黏著區、互連結構(打線或覆晶凸塊)、封裝材料與焊球陣列......