FR4 PCB 심화 가이드: 재료에 대한 진실, 실제 사양 및 사용(또는 피해야 할) 경우
3 분
FR-4는 비밀 코드가 아니라 말 그대로 난연성(등급 4)을 의미합니다. PCB 용어로 FR-4는 유리 강화 에폭시 라미네이트에 대한 NEMA(미국 전기 제조업체 협회) 등급 지정입니다. 난연성 첨가제가 포함된 에폭시 수지로 결합된 직조 유리섬유 천의 복합재라고 할 수 있습니다. "FR"은 난연성(Flame Retardant)을 의미하지만, 이것이 자동으로 UL94 V-0 인증을 의미하지는 않습니다. 단지 수지가 불이 붙었을 때 자체 소화되도록 제조되었음을 나타낼 뿐입니다. FR-4는 1968년 NEMA에 의해 명명되었으며, 브롬화 에폭시의 난연 특성 덕분에 G-10과 같은 이전 등급을 대체했습니다.
NEMA FR-4 등급 설명:
NEMA LI-1 표준은 FR-4를 "산업용 적층 열경화성 제품"으로 정의하며, 1999년부터 군용 규격(MIL-I-24768)과 통합되었습니다. 본질적으로 이는 보드가 FR-4 지정을 받으려면 제조업체 사양(MIL-I-24768)에 따른 특정 기계적, 열적 및 난연성 요구 사항을 충족해야 함을 의미합니다. FR-5 및 FR-6과 같은 다른 등급도 여전히 존재하지만 FR-4 등급이 업계 표준이 되었습니다. "FR-4"는 내화성을 갖도록 설계된 특정 등급의 라미네이트 재료(에폭시/유리 조합)를 지정하며, 부품을 "방화"로 만든다는 의미는 아닙니다.
에폭시 + 유리섬유 + 난연제 화학:
FR-4는 말 그대로 유리섬유와 에폭시의 층입니다. 경화된 녹색 에폭시 수지에 내장되어 PCB 라자냐의 "면"처럼 생각할 수 있습니다. 수지 자체는 일반적으로 브롬이 함유된 에폭시(종종 TBBPA 또는 유사한 브롬화 화합물 사용)로, 연소 시 자체 소화됩니다.
요약하면, FR-4 = 유리섬유 + 수지(에폭시) + 난연성 브롬 화학입니다. 가벼운 강도와 저렴한 비용을 결합합니다. FR-4가 "화재 감소 등급 4(Fires Reduced grade 4)"를 의미한다고 농담할 수도 있습니다. 중요한 점은 FR-4의 에폭시 수지가 연소를 중단하도록 특별히 제조되었다는 것이며, 이것이 이 등급이 PCB 업계의 주력이 된 이유입니다.
실제로 중요한 FR4 재료 특성
모든 재료 사양이 동등하게 중요한 것은 아닙니다. PCB 설계자에게 중요한 FR-4 특성에는 유리 전이 온도(Tg), 분해 온도(Td), 열팽창 계수(CTE), 유전 상수(Dk) 및 손실 탄젠트(Df)가 포함됩니다. 다음은 표준 FR-4의 일반적인 대략적 값입니다(값은 제조업체에 따라 다름):
- 유리 전이 온도(Tg): 표준 FR-4의 경우 130–140°C입니다. 이는 보드가 연화되기 시작하는 온도입니다. 고Tg FR-4 재료는 무연 공정을 위해 170–180°C까지 올라갈 수 있습니다.
- 분해 온도(Td): 약 300–350°C입니다. 이는 수지가 화학적으로 분해되는 온도입니다.
- CTE(열팽창 계수): 면내(X/Y) 12–17 ppm/°C, 면외(Z) 60–80 ppm/°C입니다. FR-4의 섬유 직조는 X/Y 팽창을 적당하게 유지하지만, Z방향에서는 5배 더 높을 수 있습니다.
- 유전 상수(Dk): 1MHz에서 대략 4.2–4.8이며, 1GHz에서는 약간 감소하여 4.4입니다. 이는 신호 속도/임피당스에 영향을 미칩니다.
- 손실 계수(Df): 낮음(1MHz~1GHz에서 0.015~0.03). Df가 낮을수록 손실이 적습니다. FR-4 보드는 RF에 최적은 아니지만 수 GHz까지는 잘 작동합니다.
| 파라미터 | 일반적인 값 (FR-4) |
| 유리 전이 온도(Tg) | 130–140°C (표준 FR-4)170–180°C (고Tg FR-4) |
| 분해 온도(Td) | 300–350°C (일부 등급은 최대 ~355°C) |
| CTE – 면내(X/Y) | 12–17 ppm/°C |
| CTE – 면외(Z) | 60–80 ppm/°C |
| 유전 상수(Dk) | 4.2–4.8 @ 1MHz4.4 @ 1GHz |
| 손실 계수(Df) | 0.015–0.03 @ 1MHz–1GHz |
많은 보드가 이러한 "일반적인 FR-4" 값을 기준으로 사용합니다. 물론 실제 값은 공급업체에 따라 다르므로, 중요한 고주파 또는 고신뢰성 설계는 항상 정확한 데이터시트를 확인해야 합니다.
표준 FR-4 vs 고Tg vs 할로겐 프리
FR-4 등급 내에서도 다양한 요구에 맞춘 변형이 있습니다. 표준 FR-4(Tg 약 130°C)는 가장 저렴하며 대부분의 소비자용 PCB에 사용됩니다. 고Tg FR-4 변형은 무연 납땜과 극한 환경을 위해 설계되었습니다. 여러 번의 260°C 리플로우 사이클을 견디기 위해 Tg가 170–180°C 이상까지 올라갈 수 있습니다.
마지막으로, 할로겐 프리 FR-4는 브롬 대신 인과 질소 난연제를 사용합니다. 이 모든 것이 RoHS 및 환경 규정을 충족하기 위한 것입니다. Tg 및 기본 특성은 유사하지만 독성 브롬을 피합니다. 추가적인 온도 마진이나 친환경 화학이 필요하다면 이를 선택하세요.
FR4 PCB 사양: 제조업체가 실제로 제공하는 것
두께 범위(0.2–3.2mm), 구리 중량 및 공차
대부분의 리지드 FR-4 라미네이트는 약 0.127mm(0.005")부터 3.175mm(0.125") 두께의 시트로 제공됩니다. 실제로 보드는 일반적으로 0.4–2.0mm로 제작됩니다. 제조업체는 종종 0.2, 0.4, 0.8, 1.0, 1.2, 1.6, 2.0, 2.4, 3.2mm 등의 코어 라미네이트를 재고로 보유합니다.
구리 박 중량은 일반적으로 각 면당 ½oz, 1oz 또는 2oz(17μm, 35μm, 70μm)입니다. 내부 층은 종종 ½~1oz이고, 외부 층은 극단적인 경우 3–4oz까지 올라갈 수 있습니다. IPC-4562 공차에 따르면, 공칭 1oz(35μm) 구리 박은 법적으로 31μm까지 낮아질 수 있어, 보드는 베이스 구리에서 약 ±10% 두께 변동을 예상해야 합니다. 도금, 축적 또는 에칭 공정에서 실제 완성된 구리는 약간 다를 수 있으므로, 설계자는 일반적으로 약간의 마진을 허용합니다.
표면 마감 호환성:
FR-4 기판은 모든 일반적인 PCB 표면 마감과 호환됩니다. 표준 마감에는 HASL(핫에어 솔더 레벨링, 유연 또는 무연)과 ENIG(무전해 니켈/침지 금)이 포함됩니다. 그 외에도 침지 은/주석, OSP 및 ENEPIG가 있습니다.
HASL(유연 또는 무연 솔더)은 고전적인 저비용 마감입니다. 반면 ENIG는 미세 피치 조립을 위한 평평한 금 표면을 제공합니다. OSP는 소비자용 보드에 자주 사용되는 저비용 유기 코팅입니다. 핵심은 FR-4 보드가 PCB 업체에서 제공하는 모든 마감으로 도금하거나 코팅할 수 있다는 것입니다. 여기에는 특별한 제한이 없습니다.
FR4 PCB 제조: 공정 차이점 및 한계
FR-4의 드릴링, 도금 및 다층 프레싱
FR-4 드릴링은 일반적으로 카바이드 비트로 수행됩니다. 플렉시블이나 메탈 코어 보드와 달리 FR-4는 기존 CNC 드릴 프레스에 충분히 강성입니다. FR-4의 유리 섬유는 연마성이 있어 급격한 마모를 피하기 위해 카바이드 드릴이 필수입니다. 드릴된 홀(비아 및 TH 부품)은 전기 도금으로 구리를 입힙니다. 다층 생산에서 FR-4 코어(구리 피복 패널)는 프리프레그 시트와 번갈아 쌓입니다. 이 스택은 열 프레스되고 프리프레그 에폭시가 녹아 흘러 층을 결합합니다. 간단히 말해, FR-4 적층은 고온 프레싱을 사용하는 친숙한 레이어 스택업이며, 모든 리지드 PCB에 사용되는 동일한 공정입니다.
종횡비, 최소 트레이스/스페이스 및 홀 사이즈 규칙
일반적인 보드 업체는 신뢰할 수 있는 도금을 위해 약 8:1에서 10:1의 종횡비(보드 두께: 홀 직경)를 기준으로 설계합니다. 예를 들어, 2mm 보드에서 10:1을 적용하면 최소 홀 사이즈는 0.2mm가 됩니다.
홀 사이즈: 표준 도금 비아는 일반적으로 ≥0.2–0.3mm 직경입니다. 0.15mm보다 작은 드릴은 매우 비용이 많이 들거나 비실용적입니다.
라인/스페이스: 1oz 구리의 경우 많은 업체가 0.1–0.125mm(4–5mil) 최소 트레이스 및 간격을 보장합니다. 구리 중량이 높을수록 에칭 공정의 한계로 인해 더 넓은 간격이 필요합니다.
FR4가 8–12층 이상에서 문제가 발생하기 시작하는 이유
더 많은 층을 쌓으면 FR-4의 한계에 부담이 갑니다. 각 층은 에폭시 수지와 구리를 추가하므로 총 두께와 내부 열이 증가합니다. 표준 FR-4(Tg 약 130°C)는 여러 번의 적층/리플로우에서 과열되거나 뒤틀릴 경우 실제로 연화될 수 있습니다. 많은 업체에서 약 8–12층(특히 두꺼운 보드)이 표준 FR-4의 실용적인 한계라고 생각합니다.
그 이상에서는 패널이 열 사이클링 하에서 휨이나 박리가 발생하기 쉽습니다. 그래서 고층수 보드는 종종 고Tg FR-4 또는 더 강성인 라미네이트를 지정합니다.
FR4가 완벽한 경우(그리고 피해야 할 경우)
비용에 민감한 소비자 및 IoT 프로젝트
이것이 FR-4의 최적 영역입니다. 바로 저렴한 범용 PCB가 필요할 때입니다. 업계에서 매일 수십억 개의 FR-4 보드를 만들기 때문에 어디에나 있고 저렴합니다. 설계가 저주파(kHz에서 저MHz)에서 적당한 전압으로 실행된다면 FR-4가 가장 합리적인 선택입니다.
고주파 및 고전력 – 더 나은 대안
수 GHz 이상의 RF 및 마이크로파의 경우 FR-4의 유전 손실과 Dk 변동성이 신호에 큰 영향을 미칩니다. 대부분의 RF/5G/Wi-Fi(>2GHz) 시스템은 대신 Rogers, PTFE 또는 세라믹 기판을 사용합니다.
또한 열전도율이 0.3W/mK에 불과하기 때문에 고출력 LED 드라이버 등에서는 알루미늄 코어 또는 구리 방열판이 있는 메탈 코어 보드가 사용됩니다.
빠른 결정을 위한 재료 매트릭스:
| 재료 | 비용 | 일반적인 주파수 사용 | 열전도율 |
| FR-4 | 낮음 | 수 GHz까지(DC–1GHz 권장) | 0.3 W/mK |
| Rogers/고주파 | 높음 | RF/마이크로파(최대 40+GHz) | 0.4–0.6 W/mK |
| 알루미늄(MCPCB) | 중간 | 전력/LED(DC 전용) | 1–2 W/mK |
| 폴리이미드 | 높음 | 플렉시블 PCB | ~0.15 W/mK |
FR-4가 가장 저렴하고 대부분의 범용 요구를 충족합니다. 알루미늄 코어는 우수한 열 확산을 위해 선택됩니다.
결론: 주문 전 30초 FR4 체크리스트
- 재료 등급: 표준 FR-4인가요, 아니면 고온 리플로우를 위한 고Tg FR-4인가요?
- 보드 두께: 1.6mm(표준) 외에 0.4mm~3.2mm 중 용도에 맞는 두께를 선택했나요?
- 구리 중량: 1oz(35μm)가 일반적이지만, 전력용은 2oz 이상을 고려하세요.
- 주파수 한계: 2GHz 이상의 신호가 있다면 Rogers 재료로 변경을 고려했나요?
모든 항목이 체크되었다면 JLCPCB에서 합리적인 비용으로 FR-4 보드를 주문해 보세요.
지속적인 성장
PCB 보드에서 커버레이의 중요성 이해하기
소개: 빠르게 진화하는 전자 산업에서 인쇄 회로 기판(PCB)의 중요성은 매우 큽니다. 이러한 핵심 요소는 거의 모든 전자 기기의 중추 역할을 합니다. PCB의 성능과 내구성을 크게 향상시키는 핵심 특징 중 하나는 커버레이(coverlay)입니다. 이 글에서는 PCB 기판에서 커버레이의 역할, 장점, 혁신에 대해 자세히 살펴봅니다. 커버레이란 무엇인가요? 커버레이(coverlay)는 커버 필름(cover film)이라고도 하며, 주로 유연한 PCB에 사용되는 보호층입니다. 경직된 PCB에 사용되는 기존의 솔더 마스크와 달리, 커버레이는 우수한 절연 및 보호 기능을 제공합니다. 폴리이미드(polyimide)로 만든 유연한 유전체 필름과 접착제로 라미네이트(laminate)된 구조로 이루어져 있습니다. ⦁ PCB 기판에서 커버레이의 역할 향상된 회로 보호: 커버레이는 섬세한 회로를 습기, 먼지, 화학물질 같은 환경 요인으로부터 견고하게 보호하여 전자 기기의 수명과 신뢰성을 보장합니다. ⦁ 최적의 ......
PCB 기본 1: 인쇄 회로 기판(PCB) 소개
"PCB 기초" 시리즈의 첫 번째 기사에 오신 것을 환영합니다. 이 시리즈에서는 인쇄 회로 기판(PCB)의 기본적인 측면과 현대 전자기기 세계에서의 중요한 역할을 탐구하는 여정을 시작하게 됩니다. 이 기사에서는 PCB의 중요성에 대해 깊이 알아보고, PCB를 구성하는 복잡한 부품과 구조를 분석하며, 설계 과정이 PCB 제조에 미치는 깊은 영향을 소개할 것입니다. PCB 기술의 핵심을 파악하고, 이 기술이 우리가 일상적으로 사용하는 기기들을 어떻게 작동하게 하는지 알아봅시다. 현대 전자 기기에서 PCB의 중요성 현대 전자 기기의 빠른 발전 속에서 PCB는 제품이 우리 생활에 필수적인 부분이 되도록 하는 핵심 요소입니다. 그 중요성을 알아봅시다. 복잡한 기능 구현 : PCB는 전자 기기의 기초 역할을 하여 다양한 부품을 통합하고 우리가 요구하는 복잡한 기능을 가능하게 합니다. 성능 및 신뢰성 향상 : 최적의 레이아웃 설계와 회로 최적화를 통해 PCB는 효율적인 신호 흐름을 보장하고 간섭을 최소화하......
FR4는 당신의 디자인에 가장 적합한 보드 재료인가요?
전자 제품 및 인쇄 회로 기판 제조 분야에서 설계에 적합한 기판 소재를 선택하는 것은 성공과 실패의 차이를 만들 수 있습니다. FR4 기판은 뛰어난 기계적 강도, 전기 절연성, 열 및 화학 물질에 대한 저항성으로 업계에서 널리 사용됩니다. 이 글에서는 FR4 기판의 특성과 장점, 인쇄 회로 기판에서의 사용, 그리고 일부 한계와 올바른 FR4 소재 선택을 위한 팁을 살펴보겠습니다. FR4 기판 소재란? FR4 기판은 "Flame Retardant 4(난연성 4등급)"의 약자로, FR4 기판이 화염 전파에 저항하고 특정 화재 안전 기준을 충족하도록 제작되었음을 나타냅니다. FR4 난연 장치는 전자 제품이나 전기 시스템과 같이 화재 안전이 우려되는 곳에서 사용되며, 난연성은 화재 사고 위험이 있는 곳에서 추가적인 안전 장치 역할을 합니다. 이 유형의 기판은 전기 부품 제조에 사용되며 인쇄 회로 기판 제조에 널리 사용됩니다. 이 기판은 에폭시 수지와 함께 기계적 강도를 제공하는 유리 섬유를 주요 구성......
후동 PCB: 이점과 응용에 대한 개요
인쇄 회로 기판(PCB)은 현대 전자 제품의 근간으로, 전자 부품의 연결과 전기 신호 전송을 위한 플랫폼을 제공합니다. 고성능 및 신뢰성 있는 전자 기기에 대한 수요가 증가함에 따라 제조업체들은 PCB의 전반적인 성능과 내구성을 향상시킬 방법을 끊임없이 모색하고 있습니다. 후동 PCB는 표준 PCB에 비해 여러 가지 장점을 제공하는 특수한 유형의 PCB입니다. 표준 PCB에 비해 더 두꺼운 동박 레이어를 갖도록 설계되어 더 높은 전류 운반 용량, 향상된 열 관리, 강화된 내구성을 제공합니다. 이 글에서는 현대 전자 제품에서 후동 PCB의 장점과 적용 분야에 대해 알아보겠습니다. 후동 PCB란? 후동 PCB는 표준 PCB보다 더 두꺼운 동박 레이어를 갖도록 설계된 기판입니다. 후동 PCB의 동박 레이어 두께는 3oz에서 20oz 이상까지 다양하며, 표준 PCB는 일반적으로 1oz입니다. 더 두꺼운 동박 레이어는 더 높은 전류 운반 용량, 향상된 열 관리, 강화된 내구성을 제공하여 고전력 애플리케......
PCB에 사용되는 재료 이해: 선택, 유형 및 중요도
인쇄 회로 기판(PCB)은 현대 전자 제품의 필수 구성 요소입니다. 이 기판들은 전자 부품을 연결하고 지지하며, 전기 신호와 전력 전달을 위한 안정적인 플랫폼을 제공합니다. 일반적인 PCB는 여러 층의 소재가 적층되어 단일 유닛을 형성합니다. PCB는 전자 제품 제조 공정의 핵심 부품입니다. 소비자 가전부터 자동차 및 항공우주 애플리케이션에 이르기까지 모든 분야에서 사용되며, 전자 기기의 기능에 필수적입니다. PCB에 사용되는 소재 유형 1. 기판(Substrate) 기판은 PCB의 베이스 소재로, 다른 소재들이 적층되는 기초 역할을 합니다. 기판은 일반적으로 FR-4라고도 알려진 유리 섬유 강화 에폭시 수지로 만들어집니다. 다른 유형의 기판으로는 CEM-1, CEM-3, 폴리이미드(PI), 로저스(Rogers)가 있습니다. 기판 선택은 작동 온도, 절연 내력, 비용과 같은 특정 요구 사항에 따라 달라집니다. 기판 선택의 일반적인 기준은 다음과 같습니다: - 유전 상수: 유전 상수는 기판의 전......
표준 PCB 두께 알아보기: PCB 프로토타입에 이상적인 두께 선택을 위한 단계별 가이드
인쇄 회로 기판(PCB)의 두께는 작은 세부 사항처럼 보일 수 있지만, 전자 기기의 성능과 신뢰성에서 중요한 역할을 합니다. 표준 PCB 두께는 기계적 안정성, 전기적 성능, 열 관리, 부품 호환성에 영향을 미치는 다양한 이점을 제공하는 업계 표준이 되었습니다. 이 글에서는 PCB의 다양한 두께가 왜 중요한지 자세히 살펴보고, 기기의 신뢰성을 높이고 성능을 향상시키는 특정 애플리케이션에 적합한 두께를 선택하는 가이드를 제공합니다. 표준 PCB 두께란? 표준 PCB 두께는 회로 기판에 일반적으로 사용되고 선호되는 두께를 말합니다. 공식적인 단일 표준은 없지만, 업계에서 널리 채택된 일반적인 크기가 있습니다. 역사적으로 표준 PCB 두께는 1.57mm 또는 약 0.062인치였으며, 이는 초기 기판 제조에 사용된 베이클라이트 시트의 크기에서 유래했습니다. 더 작은 두께 옵션이 있음에도 불구하고 이 표준은 확립된 역사와 기존 제조 공정과의 호환성으로 인해 계속해서 일반적인 선택입니다. 오늘날 0.03......