PCB의 표준 두께는 얼마일까요?
1 분
인쇄 회로 기판(PCB)은 전자 부품을 지지하는 기판 역할을 하는 전자 기기의 기초입니다. PCB 설계에서 두께는 여러 핵심 공정에 영향을 미치는 중요한 파라미터입니다. 기판의 기계적 성능뿐만 아니라 전기적 특성, 가공성, 비용에도 영향을 줍니다. 일반적인 PCB 두께는 1.6mm이지만, 다양한 용도에 적합한 여러 옵션이 있습니다. PCB 두께에 관한 규칙과 언제 이를 벗어나도 괜찮은지 알면 설계자가 회로 기판이 의도한 대로 작동하도록 결정을 내리는 데 도움이 됩니다.
다음 프로젝트에서 다양한 PCB 두께 옵션을 탐색하고 싶다면, JLCPCB에서 주문 시 쉽게 맞춤 설정할 수 있습니다. 즉시 온라인 견적을 통해 여러 두께의 가격과 리드 타임을 비교할 수 있습니다.
표준 PCB 두께란?
1.6mm(0.063인치)가 가장 일반적인 표준 PCB 두께입니다. 이 치수는 강도, 제조 용이성, 대부분의 전자 어셈블리와의 호환성 사이에서 균형을 이루기 때문에 업계 표준이 되었습니다. 이 두께는 PCB 어셈블리 에서도 널리 사용됩니다. 1.6mm 보드는 취급하기에 충분히 견고하면서도 소형 기기에 맞출 수 있을 만큼 얇습니다. 그러나 1.6mm가 유일한 옵션은 아닙니다. 널리 사용되는 다른 두께는 다음과 같습니다:
- 0.8 mm – 소형 가전 제품에서 인기가 있습니다.
- 1.0 mm – 휴대용 기기와 소형 폼팩터 보드에 자주 사용됩니다.
- 2.0 mm ~ 2.4 mm – 추가 강성이 필요할 때 선택됩니다.
- 3.2 mm – 강도가 중요한 전력 전자 및 산업용 보드에 적용됩니다.
다양한 설계 목표를 충족하기 위해 여러 옵션이 제공되지만, 1.6mm는 여전히 범용 PCB 제조의 표준 두께입니다.
PCB 두께를 결정하는 요소
레이어 수
PCB의 레이어 수는 어셈블리의 전체 두께에 상당한 영향을 미칩니다. 기본 2레이어 PCB는 1.6mm 내에서 쉽게 수용할 수 있습니다. 그러나 4레이어 또는 고속 제어 임피던스 설계 다층 보드와 같은 더 복잡한 보드의 경우, 내부 유전체와 구리 레이어의 두께를 조정하여 동일한 두께를 달성합니다. 8-12레이어 이상의 PCB도 정교한 설계를 위해 1.6mm 내에서 생산할 수 있지만, 유전체 레이어가 더 얇아져야 합니다. 12레이어를 초과하면 충분한 내구성과 제조성을 달성하기 위해 전체 두께를 늘려야 하는 경우가 많습니다.
기계적 강도
PCB가 두꺼울수록 더 단단해지고 휘거나 뒤틀리지 않습니다. 이는 자동차 전자 장치, 산업 장비, 또는 거칠게 다루어질 가능성이 있는 많은 커넥터가 있는 보드와 같은 응용 분야에 적합합니다. 반면 웨어러블, 스마트폰, 플렉시블 PCB처럼 폼팩터와 유연성이 더 중요한 경우에는 더 얇은 PCB가 선호됩니다. 적절한 비율은 내구성과 성능에 매우 중요합니다. PCB의 열적 특성도 두께에 따라 변합니다.
전기적 성능
[Image illustrating the relationship between trace impedance and dielectric thickness in a PCB cross-section]PCB 두께는 보드의 전기적 특성에도 영향을 미칩니다. 예를 들어, 고속 및/또는 고주파 설계에서는 제어된 임피던스 사용이 중요합니다. 구리 플레인 사이의 유전체 레이어 두께가 신호 품질과 교환에 직접적으로 영향을 미쳐 전반적인 신호 무결성에 영향을 줍니다. 설계자들은 특정 응용 분야에서 안정적이고 신뢰할 수 있는 전기적 성능을 달성하기 위해 어떤 스택업과 두께가 가장 적합한지 PCB 제조업체와 자주 상담합니다.
제조 표준 및 비용
1.6mm와 같은 표준 두께를 선택하는 것이 더 나은 대안입니다. 이는 IPC-2221 표준의 PCB 두께에 부합하며 대부분의 PCB 제조업체에서 정기적으로 사용됩니다. 또한 이러한 옵션은 구하기 쉽고 제조가 용이하며 비용이 적게 듭니다. 더 두껍거나 얇은 PCB도 가능하지만, 리드 타임과 전체 PCB 생산 비용이 증가합니다.
표준 PCB 두께 옵션 및 응용 분야
다음 두께 범위는 업계에서 일반적으로 사용되며, 각각 다른 응용 분야를 지원합니다.
| PCB 두께 | 일반적인 응용 분야 |
| 0.2–0.5 mm | 플렉시블 PCB, 초박형 기기, 소형 센서 |
| 0.8–1.0 mm | 가전 제품, 휴대용 기기, 소형 모듈 |
| 1.6 mm (표준) | 범용 전자 기기, 컴퓨터, 통신 보드 |
| 2.0–2.4 mm | 자동차 PCB, 산업용 컨트롤러, 대형 커넥터가 있는 보드 |
| 3.2 mm | 전력 전자 및 장수명 산업 시스템 |
이는 1.6mm가 범용 표준이지만, 설계자는 성능 및 기계적 요구 사항에 따라 두께를 자유롭게 선택할 수 있음을 보여줍니다.
올바른 PCB 두께 선택 방법
전기적 요구 사항 고려
고속 PCB를 설계할 때는 정확한 임피던스 제어가 필요합니다. 1.6mm 스택업에서 더 얇은 유전체를 사용하면 신호 트레이스가 균일한 임피던스를 유지합니다. 임피던스는 RF 및 고주파 보드에서와 같이 전파 지연 및 신호 손실에 영향을 미치며 이에 비례합니다. 설계자는 두께를 선택하기 전에 임피던스 콜아웃을 계산해야 합니다.
기계적 요구 사항 고려
보드가 물리적 스트레스, 진동 또는 커넥터 결합을 경험할 가능성이 있다면 두께를 2.0mm 이상으로 늘리는 것이 유리할 수 있습니다. 반면 휴대용이나 웨어러블 기기, 핸드헬드 장비에는 더 얇은 보드가 선호됩니다.
제조 및 비용 고려
일부 일반적인 두께는 1.6mm/1.2mm와 같이 더 쉽게 구할 수 있고 저렴합니다. 고유한 프로젝트를 위해 맞춤형 구성이 필요한 경우도 있지만, 일반적으로 제작 비용이 더 높고 납 함유량이 더 많을 수 있습니다. 저희는 산업 표준과 승인을 준수하여 생산량을 좇기 더 용이합니다.
PCB 두께 vs. 레이어 수
더 두꺼운 보드가 반드시 더 많은 레이어를 의미하는 것은 아니며, 이는 흔한 오해입니다. 실제로 1.6mm 두께의 PCB는 2~12레이어까지도 가능합니다. 제조업체는 공칭 치수 내에 특정 맞춤을 유지하기 위해 구리와 유전체 레이어의 두께를 조절합니다.
- 2레이어 PCB: 단순하고 저렴하며, 기본 가전 제품에 사용됩니다.
- 4레이어 PCB: 더 나은 EMI 성능과 전력 분배가 필요한 기기에 일반적입니다.
- 6레이어 PCB: 통신 기기, 컴퓨터, 중간 수준의 고속 설계에 사용됩니다.
- 8~12레이어: 네트워킹, 서버, 고급 FPGA 보드용 고밀도 보드입니다.
레이어 수가 12를 초과하면 PCB의 제조 가능 여부와 기계적 강도를 보장하기 위해 전체 두께가 보통 2.0mm가 됩니다.
결론
PCB를 처음 설계할 때 두께를 사소한 것으로 무시하기 쉽지만, 기계적 강도, 신호 품질, 레이어 스택업 순서, 심지어 가격에도 영향을 미칩니다. PCB는 다양한 두께로 제공되며, 가장 인기 있는 것은 1.6mm 업계 표준이지만 0.2mm부터 3.2mm 이상까지 다양합니다. 이 두께는 성능과 제조성 사이의 트레이드오프에서 대부분의 응용 분야에 적합한 최적점입니다.
지속적인 성장
PCB 구조의 내부: 레이어와 적층 구조가 현대 회로 기판 성능을 어떻게 정의하는지
인쇄 회로 기판은 평평한 초록색 직사각형처럼 보일 수 있지만, 표면 아래를 들여다보면 정교한 다층 구조물입니다. 기기가 더욱 소형화·고도화될수록 엔지니어는 전기적·기계적 요구를 충족하기 위해 재료와 적층 구조를 신중히 선택한 다층 기판을 활용합니다. 이 글은 기판 선택, 층 적층, 적층 방식이 PCB 성능에 어떤 영향을 주는지 파헹치기 위해 그 층들을 하나씩 벗겨냅니다. 여기서는 기본 재료부터 고밀도 인터커넥트에 이르기까지 PCB 설계의 기초를 다룹니다. 또한 업계 권장사항과 비용 균형에 대한 내용도 함께 다룹니다. 저는 시간이 지나며 업계 표준으로 자리 잡은 자주 사용되는 다양한 적층 구조를 비교해 보여드리겠습니다. 모든 PCB 구조를 구성하는 핵심 요소 기판 재료와 구리 포일 기초 모든 PCB는 기판에서 시작합니다. 기판은 보드의 절연성 ‘배추뼈’와 같습니다. 가장 흔한 것은 FR-4입니다. FR-4는 저렴하고 기계적 강도가 높으며 유전 상수가 중간 수준이라 범용 기판으로 적합합니다. 문제......
PCB 열전도율에 대한 이해: 재료 선택, 계산 방법 및 고성능 솔루션
소형 전자기기에서는 전력 소비가 문제가 되며, 이로 인해 열 문제가 발생합니다. PCB는 DRC 검사, SI 시뮬레이션, 심지어 기능 테스트도 통과할 수 있지만, 열 관리가 부족하면 현장에서 끔찍하게 실패할 수 있습니다. PCB 열전도율은 더 이상 전자 설계자에게 선택 사항이 아니라 현대 설계의 핵심 고려 사항이 되었습니다. 부품 크기가 작아질수록 열 여유는 사라집니다. 복잡하고 소형 조립의 PCB를 설계할 때는 PCB 재료의 적절한 열전도율을 알아야 합니다. 이 글에서는 견고한 제품과 비용이 많이 드는 재설계의 차이를 만들 수 있는 PCB 유효 열전도율을 계산하는 방법을 알아보겠습니다. 이 글은 실무적이고 엔지니어 친화적인 PCB 열전도율의 심층 분석을 제공합니다. 제안된 재료, 계산 방법, 고열전도율 PCB를 설계하기 위한 입증된 전략을 다룹니다. PCB 재료의 열전도율 기초 열전도율 정의 및 열 전달에서의 역할 열전도율 k는 W/mK 단위로 측정되며, 재료가 주변으로 열을 얼마나 효율적으......
PCB 수리의 현실: 왜 최후의 수단인지와 대부분의 문제를 예방하는 적절한 설계와 제조
인쇄 회로 기판은 전자 기기의 심장과 신경계와 같습니다. 고장이 발생하기 시작하면 그 이유를 알아야 합니다. 표준 고장 모드에는 부품 파손, 배선 손상, 환경적 스트레스가 포함됩니다. IC가 타버릴 수 있으며, 미세한 솔더 접합부는 열에 의해 균열이 생길 수 있습니다. 과열은 회로 구역을 실제로 태워버릴 수 있습니다. 기기를 떨어뜨리거나 찌그러뜨리면 부품에 눈에 보이는 균열이 생깁니다. 구리 배선이 부식되어 단락을 일으킬 수도 있습니다. 오늘 포스트에서는 수리 작업을 언제 해야 하는지, 주요 단점은 무엇인지 알아보겠습니다. 수리 성공 후 수행해야 할 기본 점검도 살펴보겠습니다. 때로는 수리에 애쓰기보다 교체하는 것이 최선의 선택인 경우도 있습니다. 표준 고장 모드와 근본 원인 기판이 작동을 멈추는 흔한 이유가 있습니다. 그중 하나는 부품 고장으로, 커패시터 건조, 다이오드 소손, 집적 회로 실패 등이 있습니다. 또 다른 주요 원인은 열 손상으로, 열은 지속적인 적입니다. 기계적 스트레스도 빈번......
PCB 보드에서 커버레이의 중요성 이해하기
소개: 빠르게 진화하는 전자 산업에서 인쇄 회로 기판(PCB)의 중요성은 매우 큽니다. 이러한 핵심 요소는 거의 모든 전자 기기의 중추 역할을 합니다. PCB의 성능과 내구성을 크게 향상시키는 핵심 특징 중 하나는 커버레이(coverlay)입니다. 이 글에서는 PCB 기판에서 커버레이의 역할, 장점, 혁신에 대해 자세히 살펴봅니다. 커버레이란 무엇인가요? 커버레이(coverlay)는 커버 필름(cover film)이라고도 하며, 주로 유연한 PCB에 사용되는 보호층입니다. 경직된 PCB에 사용되는 기존의 솔더 마스크와 달리, 커버레이는 우수한 절연 및 보호 기능을 제공합니다. 폴리이미드(polyimide)로 만든 유연한 유전체 필름과 접착제로 라미네이트(laminate)된 구조로 이루어져 있습니다. ⦁ PCB 기판에서 커버레이의 역할 향상된 회로 보호: 커버레이는 섬세한 회로를 습기, 먼지, 화학물질 같은 환경 요인으로부터 견고하게 보호하여 전자 기기의 수명과 신뢰성을 보장합니다. ⦁ 최적의 ......
PCB 기본 1: 인쇄 회로 기판(PCB) 소개
"PCB 기초" 시리즈의 첫 번째 기사에 오신 것을 환영합니다. 이 시리즈에서는 인쇄 회로 기판(PCB)의 기본적인 측면과 현대 전자기기 세계에서의 중요한 역할을 탐구하는 여정을 시작하게 됩니다. 이 기사에서는 PCB의 중요성에 대해 깊이 알아보고, PCB를 구성하는 복잡한 부품과 구조를 분석하며, 설계 과정이 PCB 제조에 미치는 깊은 영향을 소개할 것입니다. PCB 기술의 핵심을 파악하고, 이 기술이 우리가 일상적으로 사용하는 기기들을 어떻게 작동하게 하는지 알아봅시다. 현대 전자 기기에서 PCB의 중요성 현대 전자 기기의 빠른 발전 속에서 PCB는 제품이 우리 생활에 필수적인 부분이 되도록 하는 핵심 요소입니다. 그 중요성을 알아봅시다. 복잡한 기능 구현 : PCB는 전자 기기의 기초 역할을 하여 다양한 부품을 통합하고 우리가 요구하는 복잡한 기능을 가능하게 합니다. 성능 및 신뢰성 향상 : 최적의 레이아웃 설계와 회로 최적화를 통해 PCB는 효율적인 신호 흐름을 보장하고 간섭을 최소화하......
FR4는 당신의 디자인에 가장 적합한 보드 재료인가요?
전자 제품 및 인쇄 회로 기판 제조 분야에서 설계에 적합한 기판 소재를 선택하는 것은 성공과 실패의 차이를 만들 수 있습니다. FR4 기판은 뛰어난 기계적 강도, 전기 절연성, 열 및 화학 물질에 대한 저항성으로 업계에서 널리 사용됩니다. 이 글에서는 FR4 기판의 특성과 장점, 인쇄 회로 기판에서의 사용, 그리고 일부 한계와 올바른 FR4 소재 선택을 위한 팁을 살펴보겠습니다. FR4 기판 소재란? FR4 기판은 "Flame Retardant 4(난연성 4등급)"의 약자로, FR4 기판이 화염 전파에 저항하고 특정 화재 안전 기준을 충족하도록 제작되었음을 나타냅니다. FR4 난연 장치는 전자 제품이나 전기 시스템과 같이 화재 안전이 우려되는 곳에서 사용되며, 난연성은 화재 사고 위험이 있는 곳에서 추가적인 안전 장치 역할을 합니다. 이 유형의 기판은 전기 부품 제조에 사용되며 인쇄 회로 기판 제조에 널리 사용됩니다. 이 기판은 에폭시 수지와 함께 기계적 강도를 제공하는 유리 섬유를 주요 구성......