열전도율을 향상시키는 알루미늄 PCB
1 분
열 관리는 현대 전자 기기가 점점 더 작아지고 강력해짐에 따라 전자 설계에서 가장 중요한 문제 중 하나가 되었습니다. PCB에는 다양한 코어와 재료가 있습니다. 이전에 다양한 재료를 다루었지만, 오늘은 메탈 코어 PCB에 중점을 둡니다. 기본 PCB에서 열 방출이 불량하면 전자 기기의 성능이 저하되고, 수명이 단축되거나, 치명적인 고장이 발생할 수 있습니다.
알루미늄 PCB는 기존 FR-4 보드에 비해 더 나은 열전도율을 가지고 있어 효율적인 대안이 됩니다. 차이가 나는 특성은 아래 글에서 나열합니다. 또한 알루미늄 PCB의 구조, 장점, 용도와 열전도율을 향상시키는 방법을 살펴보겠습니다.
알루미늄 PCB란?
알루미늄 인쇄 회로 기판(PCB)은 금속 기반 인쇄 회로 기판입니다. 회로 기판에서 전력 전자 장치가 생성하는 열을 제어하도록 설계되었습니다. 기존 유리섬유(FR-4) 대신 알루미늄을 기초 기판으로 사용합니다. 알루미늄 PCB의 기본 구조는 다음과 같습니다:
1. 구리 회로 레이어: 이 레이어의 주요 기능은 PCB의 모든 부품에 전기적 연결을 제공하는 것입니다. 표준 CCL(1~10온스)에 비해 사용되는 구리 레이어가 상대적으로 더 두껍습니다. PCB 가격 책정 시 구리 중량을 선택할 수 있습니다. 더 두꺼운 구리 코팅은 더 높은 전류 용량과 관련이 있습니다.
2. 유전체 레이어(절연 레이어): 유전체 레이어는 약 50~200μm 두께의 절연 레이어로 알려져 있습니다. 전기 절연과 열 전도 레이어 역할을 하기 때문에 열에 대한 저항은 낮고 전기 신호에 대한 저항은 높아야 합니다.
3. 금속 베이스 레이어(알루미늄): 알루미늄 베이스는 알루미늄 기판으로 구성됩니다. PCB에 기계적 강도를 제공합니다. 하지만 주요 용도는 열 전도체 역할을 하여 열을 방출하는 것입니다.
4. 알루미늄 베이스 멤브레인 레이어: 이 유형의 멤브레인은 선택적입니다. 금속 표면의 원치 않는 에칭과 긁힘을 방지하는 보호 목적으로 사용됩니다.
전자 기기에서 열전도율이 중요한 이유
전력 컨버터, LED, 차량용 전자 장치와 같은 전자 부품이 작동하는 동안 열이 발생합니다. 이 열이 주변으로 빠르게 방출되지 않으면 주변 부품이 가열됩니다. 과도한 열 축적은 부품 수명을 단축시키고 솔더 조인트 피로를 유발할 수 있습니다. 부품이 과열되면 타거나 PCB와 전체 회로에 불이 붙을 수 있습니다.
알루미늄 PCB의 열전도율
1. 알루미늄의 우수한 열전도율
두 기판을 나란히 비교하면 특성을 확인할 수 있습니다. FR-4는 0.3~0.4 W/mK의 열전도율을 가집니다. 반면 알루미늄은 약 205 W/mK의 열전도율을 가집니다. 비교에 따르면 기존 FR-4 PCB는 5.50 × 10⁻⁴ °C/W의 열 저항을 가지며, 이는 알루미늄 PCB보다 거의 30% 더 높습니다. 결과적으로 열 방출 효율이 크게 감소합니다.
2. 유전체 레이어의 역할
알루미늄이 높은 열전도율을 가지고 있지만, 구리 트레이스와 알루미늄 사이에 위치한 유전체 레이어가 열 전달에 크게 기여합니다. 일부 설계에서 절연 레이어의 열전도율은 1 W/mK에서 10 W/mK 사이입니다.
열 저항 방정식:
Rth 값이 낮을수록 열 전도가 더 좋음을 나타냅니다. 제조업체는 유전체 재료를 최적화하고 두께를 줄여 알루미늄 PCB의 열 성능을 크게 향상시킵니다.
알루미늄 PCB의 열 방출 및 팽창
열 제거에서 알루미늄 PCB는 표준 FR4 PCB보다 뛰어납니다. 예를 들어, 두께 1.6mm의 알루미늄 PCB는 와트당 2-3도의 열 저항(TR)을 가집니다. 반면 같은 두께의 FR4 PCB는 와트당 22-25도의 TR을 가집니다. 열팽창 계수도 재료마다 다릅니다. 알루미늄 PCB는 우수한 열 방출 능력으로 인해 열팽창/수축 문제가 없습니다.
알루미늄 PCB vs 기존 FR-4 PCB
알루미늄 PCB의 응용 분야
1. LED 조명: 알루미늄 PCB는 고휘도 LED가 생성하는 열을 제어하기 위해 LED 조명 기구와 전구에 자주 사용됩니다. PCB 베이스가 가장 가까운 방열판에 직접 연결될 수 있어 모든 LED 전구에 사용됩니다.
2. 전력 전자: 더 높은 전력이 필요하거나 전압/전류 변환이 수행될 때 사용됩니다. 전원 공급 장치, 전압 레귤레이터, 컨버터가 몇 가지 예입니다.
3. 가전 제품: 전자 제품이 점점 소형화됨에 따라 작은 방열판이 최선의 선택이 아닐 수 있습니다. 그런 경우 메탈 코어 PCB가 더 나은 선택이 됩니다. 가전 제품 응용 분야에는 컴퓨터, 모바일 기기, LCD 백라이트가 포함됩니다.
4. 의료 장비: MRI 스캐너, 수술용 조명, 진단 장비는 항상 저온 상태를 유지해야 하는 가장 정밀한 전기 장비의 몇 가지 예입니다.
결론
부품 발열이 주요 문제인 경우 알루미늄 PCB가 우수한 여러 이유를 살펴보았습니다. 알루미늄 PCB는 고전력 및 소형 기기에 대한 수요 증가로 인해 열 관리를 위한 최선의 선택이 되었습니다. 기계적 견고성과 강력한 열전도율 면에서 FR4를 능가합니다. 그러나 회로 작동 중 열이 유입되는 것을 방지하는 추가 기술이 있으며, 능동 냉각 기술, 방열판, 히트파이프, 기본 CPU 팬 등 항상 냉각 솔루션이 있습니다. 엔지니어는 열 전달 원리를 이해함으로써 내구성 있고 효과적인 전자 기기를 설계할 수 있습니다.
지속적인 성장
PCB 보드에서 커버레이의 중요성 이해하기
소개: 빠르게 진화하는 전자 산업에서 인쇄 회로 기판(PCB)의 중요성은 매우 큽니다. 이러한 핵심 요소는 거의 모든 전자 기기의 중추 역할을 합니다. PCB의 성능과 내구성을 크게 향상시키는 핵심 특징 중 하나는 커버레이(coverlay)입니다. 이 글에서는 PCB 기판에서 커버레이의 역할, 장점, 혁신에 대해 자세히 살펴봅니다. 커버레이란 무엇인가요? 커버레이(coverlay)는 커버 필름(cover film)이라고도 하며, 주로 유연한 PCB에 사용되는 보호층입니다. 경직된 PCB에 사용되는 기존의 솔더 마스크와 달리, 커버레이는 우수한 절연 및 보호 기능을 제공합니다. 폴리이미드(polyimide)로 만든 유연한 유전체 필름과 접착제로 라미네이트(laminate)된 구조로 이루어져 있습니다. ⦁ PCB 기판에서 커버레이의 역할 향상된 회로 보호: 커버레이는 섬세한 회로를 습기, 먼지, 화학물질 같은 환경 요인으로부터 견고하게 보호하여 전자 기기의 수명과 신뢰성을 보장합니다. ⦁ 최적의 ......
PCB 기본 1: 인쇄 회로 기판(PCB) 소개
"PCB 기초" 시리즈의 첫 번째 기사에 오신 것을 환영합니다. 이 시리즈에서는 인쇄 회로 기판(PCB)의 기본적인 측면과 현대 전자기기 세계에서의 중요한 역할을 탐구하는 여정을 시작하게 됩니다. 이 기사에서는 PCB의 중요성에 대해 깊이 알아보고, PCB를 구성하는 복잡한 부품과 구조를 분석하며, 설계 과정이 PCB 제조에 미치는 깊은 영향을 소개할 것입니다. PCB 기술의 핵심을 파악하고, 이 기술이 우리가 일상적으로 사용하는 기기들을 어떻게 작동하게 하는지 알아봅시다. 현대 전자 기기에서 PCB의 중요성 현대 전자 기기의 빠른 발전 속에서 PCB는 제품이 우리 생활에 필수적인 부분이 되도록 하는 핵심 요소입니다. 그 중요성을 알아봅시다. 복잡한 기능 구현 : PCB는 전자 기기의 기초 역할을 하여 다양한 부품을 통합하고 우리가 요구하는 복잡한 기능을 가능하게 합니다. 성능 및 신뢰성 향상 : 최적의 레이아웃 설계와 회로 최적화를 통해 PCB는 효율적인 신호 흐름을 보장하고 간섭을 최소화하......
FR4는 당신의 디자인에 가장 적합한 보드 재료인가요?
전자 제품 및 인쇄 회로 기판 제조 분야에서 설계에 적합한 기판 소재를 선택하는 것은 성공과 실패의 차이를 만들 수 있습니다. FR4 기판은 뛰어난 기계적 강도, 전기 절연성, 열 및 화학 물질에 대한 저항성으로 업계에서 널리 사용됩니다. 이 글에서는 FR4 기판의 특성과 장점, 인쇄 회로 기판에서의 사용, 그리고 일부 한계와 올바른 FR4 소재 선택을 위한 팁을 살펴보겠습니다. FR4 기판 소재란? FR4 기판은 "Flame Retardant 4(난연성 4등급)"의 약자로, FR4 기판이 화염 전파에 저항하고 특정 화재 안전 기준을 충족하도록 제작되었음을 나타냅니다. FR4 난연 장치는 전자 제품이나 전기 시스템과 같이 화재 안전이 우려되는 곳에서 사용되며, 난연성은 화재 사고 위험이 있는 곳에서 추가적인 안전 장치 역할을 합니다. 이 유형의 기판은 전기 부품 제조에 사용되며 인쇄 회로 기판 제조에 널리 사용됩니다. 이 기판은 에폭시 수지와 함께 기계적 강도를 제공하는 유리 섬유를 주요 구성......
후동 PCB: 이점과 응용에 대한 개요
인쇄 회로 기판(PCB)은 현대 전자 제품의 근간으로, 전자 부품의 연결과 전기 신호 전송을 위한 플랫폼을 제공합니다. 고성능 및 신뢰성 있는 전자 기기에 대한 수요가 증가함에 따라 제조업체들은 PCB의 전반적인 성능과 내구성을 향상시킬 방법을 끊임없이 모색하고 있습니다. 후동 PCB는 표준 PCB에 비해 여러 가지 장점을 제공하는 특수한 유형의 PCB입니다. 표준 PCB에 비해 더 두꺼운 동박 레이어를 갖도록 설계되어 더 높은 전류 운반 용량, 향상된 열 관리, 강화된 내구성을 제공합니다. 이 글에서는 현대 전자 제품에서 후동 PCB의 장점과 적용 분야에 대해 알아보겠습니다. 후동 PCB란? 후동 PCB는 표준 PCB보다 더 두꺼운 동박 레이어를 갖도록 설계된 기판입니다. 후동 PCB의 동박 레이어 두께는 3oz에서 20oz 이상까지 다양하며, 표준 PCB는 일반적으로 1oz입니다. 더 두꺼운 동박 레이어는 더 높은 전류 운반 용량, 향상된 열 관리, 강화된 내구성을 제공하여 고전력 애플리케......
PCB에 사용되는 재료 이해: 선택, 유형 및 중요도
인쇄 회로 기판(PCB)은 현대 전자 제품의 필수 구성 요소입니다. 이 기판들은 전자 부품을 연결하고 지지하며, 전기 신호와 전력 전달을 위한 안정적인 플랫폼을 제공합니다. 일반적인 PCB는 여러 층의 소재가 적층되어 단일 유닛을 형성합니다. PCB는 전자 제품 제조 공정의 핵심 부품입니다. 소비자 가전부터 자동차 및 항공우주 애플리케이션에 이르기까지 모든 분야에서 사용되며, 전자 기기의 기능에 필수적입니다. PCB에 사용되는 소재 유형 1. 기판(Substrate) 기판은 PCB의 베이스 소재로, 다른 소재들이 적층되는 기초 역할을 합니다. 기판은 일반적으로 FR-4라고도 알려진 유리 섬유 강화 에폭시 수지로 만들어집니다. 다른 유형의 기판으로는 CEM-1, CEM-3, 폴리이미드(PI), 로저스(Rogers)가 있습니다. 기판 선택은 작동 온도, 절연 내력, 비용과 같은 특정 요구 사항에 따라 달라집니다. 기판 선택의 일반적인 기준은 다음과 같습니다: - 유전 상수: 유전 상수는 기판의 전......
표준 PCB 두께 알아보기: PCB 프로토타입에 이상적인 두께 선택을 위한 단계별 가이드
인쇄 회로 기판(PCB)의 두께는 작은 세부 사항처럼 보일 수 있지만, 전자 기기의 성능과 신뢰성에서 중요한 역할을 합니다. 표준 PCB 두께는 기계적 안정성, 전기적 성능, 열 관리, 부품 호환성에 영향을 미치는 다양한 이점을 제공하는 업계 표준이 되었습니다. 이 글에서는 PCB의 다양한 두께가 왜 중요한지 자세히 살펴보고, 기기의 신뢰성을 높이고 성능을 향상시키는 특정 애플리케이션에 적합한 두께를 선택하는 가이드를 제공합니다. 표준 PCB 두께란? 표준 PCB 두께는 회로 기판에 일반적으로 사용되고 선호되는 두께를 말합니다. 공식적인 단일 표준은 없지만, 업계에서 널리 채택된 일반적인 크기가 있습니다. 역사적으로 표준 PCB 두께는 1.57mm 또는 약 0.062인치였으며, 이는 초기 기판 제조에 사용된 베이클라이트 시트의 크기에서 유래했습니다. 더 작은 두께 옵션이 있음에도 불구하고 이 표준은 확립된 역사와 기존 제조 공정과의 호환성으로 인해 계속해서 일반적인 선택입니다. 오늘날 0.03......