PCB 동박 채우기에 대한 기본 사항
1 분
PCB 설계에서 동박 채우기란?
동박 채우기(Copper Pour)는 PCB 동박 레이어의 미사용 영역을 솔리드 동박 평면으로 채우는 기술을 말합니다. 이 평면은 전원 또는 접지 네트에 연결되어 연속적인 전도 경로를 형성합니다. 동박 채우기는 일반적으로 전원 및 접지 평면에 사용되며, 특정 목적을 위해 신호 레이어에도 사용됩니다.
동박 채우기의 목적:
접지 평면: 동박 채우기는 솔리드 접지 평면을 형성하여 신호에 대한 저임피던스 리턴 경로를 제공하고 전자기 간섭(EMI)을 줄입니다.
전원 평면: 동박 채우기는 전원 평면으로 사용되어 PCB 전체에 전력을 균일하게 분배하고, 전압 강하를 최소화하며 전원 안정성을 향상시킵니다.
방열: 동박 채우기는 히트싱크 역할을 하여 전력 부품에서 발생하는 열을 분산시키고 방출하여 과열을 방지하고 PCB의 신뢰성을 보장합니다.
동박 채우기의 장점:
향상된 신호 무결성: 접지 루프, 노이즈, 간섭을 줄여 신호 무결성을 유지하고 신호 저하를 최소화합니다.
개선된 열 관리: 동박 채우기는 방열을 향상시켜 핫스팟을 방지하고 부품의 최적 작동 온도를 보장합니다.
동박 절약: 동박 채우기의 효과적인 활용은 추가 트레이스의 필요성을 줄이고 동박 활용 효율성을 높여 비용 절감으로 이어집니다.
동박 채우기 구현:
동박 채우기 배치는 PCB의 미사용 공간을 평면 동박으로 채우는 것을 의미합니다. 이는 PCB 설계의 중요한 부분이며, 모든 주요 PCB 설계 소프트웨어에서 자동으로 배치할 수 있습니다. 동박 채우기 접지 임피던스를 낮춰 EMC를 구축하고, 전압 강하를 줄여 전력 효율성을 높이며, 루프 면적을 줄여 EMI를 완화하는 데 도움이 됩니다.
동박 채우기 내 서멀 릴리프 패드 사용
동박은 열전도성이 매우 높습니다(약 380W/(m·K)). 이 때문에 패드가 인접한 동박 평면에 모든 면에서 완전히 연결되면 솔더링 중 열이 매우 빠르게 방출되어 솔더링 문제가 발생합니다. "서멀 릴리프" 패드는 열 방출을 줄이고 솔더링을 돕기 위해 사용됩니다.
해치형과 솔리드형 동박 채우기
알려진 바와 같이 PCB 트레이스의 분포 정전 용량은 고주파 조건에서 영향을 미칩니다. 트레이스의 길이가 노이즈 주파수의 해당 파장의 1/20보다 크면 트레이스는 안테나 역할을 하여 이 노이즈를 주변 공간으로 전송합니다. 접지가 불량한 동박 채우기는 이 노이즈를 더욱 전파하는 데 기여합니다. 따라서 고주파 회로에서 접지 연결은 전기적 연속성뿐만 아니라 λ/20 미만의 간격을 유지해야 합니다. 트레이스의 비아는 다층 기판의 접지 평면에 "양호한 접지"를 달성하는 데 도움이 됩니다. 적절히 설계된 동박 평면은 전류 용량을 증가시킬 뿐만 아니라 EMI도 줄입니다.
일반적으로 두 가지 스타일의 동박 채우기가 있습니다: 솔리드형과 해치형. 솔리드형 채우기 전류 용량을 증가시키고 차폐 기능을 제공하지만, 웨이브 솔더링 시 휨과 동박 박리를 유발할 수 있습니다. 이는 솔리드 동박 채우기에 슬롯/개구부를 설계하여 완화할 수 있습니다. 반면 해치형 채우기는 주로 차폐용으로 사용되며 전류 운반 능력이 높지 않습니다. 해치형 채우기는 동박 면적이 줄어들어 방열에 유리할 수 있습니다. 그러나 해치형 채우기의 단점은 그것을 구성하는 동박 "세그먼트"가 EMI를 증가시킬 수 있다는 것입니다: 이러한 세그먼트의 길이가 회로 작동 주파수의 전기적 길이와 유사할 때, 전체 채우기 간섭 신호를 전송하는 많은 안테나처럼 작동하여 회로가 전혀 작동하지 않을 수 있습니다. PCB의 회로에 맞는 동박 채우기 유형을 선택하는 것이 가장 좋습니다: EMI 요구 사항이 있는 고주파 회로에는 해치형 채우기, 저주파 또는 고전류 회로에는 솔리드형 채우기를 사용하세요.
더 높은 정밀도와 품질을 요구하는 현대 PCB 설계에서 모든 주요 PCB 제조업체는 저비용 습식 필름 공정을 버리고 우수한 건식 필름 공정을 채택했습니다. 해치형 동박 채우기는 건식 필름 공정에서 필름 균열을 유발할 수 있으므로 가능한 경우 해치형 대신 솔리드형 채우기를 사용하는 것이 좋습니다.
내층의 동박 채우기
잔동율: 에칭 후 내층에 남아있는 동박 면적과 전체 기판 면적의 비율입니다.
적층: 프리프레그를 적절한 크기로 자른 후 내층 코어 사이 또는 코어와 동박 시트 사이에 배치합니다. 층이 쌓인 스택(적층판)을 가열하고 가압하여 프리프레그 레이어의 수지 함량을 녹입니다. 수지는 인접한 레이어의 동박이 없는 영역을 채우기 위해 흐르고, 냉각되면 레이어를 함께 접합합니다.
설계 문제: 낮은 잔동율은 프리프레그의 수지가 누락된 동박의 위치를 채우기 위해 더 많이 퍼져야 함을 의미합니다. 그 결과 예상보다 얇은 기판, 동박 레이어의 주름/접힘, 수지의 보이드, 수지 부족으로 인한 잠재적인 층 분리 등이 발생할 수 있습니다.
설계 제안: 가능한 경우 기판의 빈 영역에 동박 채우기를 배치하세요. 고속 신호 트레이스로부터 최소 0.5mm 간격을 유지하세요.
총 적층판 및 기판 두께 계산
이론적 적층판 두께
= 외층 동박 + 경화된 프리프레그 + 코어
= (0.7×2) + (4.54+4.48) + (1.2+44.84+1.2) = 57.66 mil = 1.46 mm.
이론적 기판 두께
= 솔더 마스크 + 도금된 외층 동박 + 경화된 프리프레그 + 코어
= (1×2) + (1.4×2) + (4.54+4.48) + (1.2+44.84+1.2) = 61.06 mil = 1.55 mm.
경화된 프리프레그 두께
= 미경화 프리프레그 두께 – 인접 코어 레이어에서 수지로 채워질 두께
= 미경화 프리프레그 두께 – ((1 – 잔동율) × 동박 두께)
예시 스택업은 아래 표에 설명되어 있습니다.
레이어 1과 2를 예로 들면:
- 미경화 프리프레그 두께 = 4.72 mil, 레이어 2 잔동율 = 85%, 내층 동박 두께 = 1 oz,
- 경화된 프리프레그 두께 = 4.72 – ((1 – 85%) × 1.2) = 4.54 mil.
명목상 1 oz 동박 두께는 35 μm이지만, 전처리 및 브라우닝 중 손실로 인해 실제 두께는 30 μm(1.2 mil)입니다.
JLCPCB의 패널 동박 채우기 추가
JLCPCB는 낮은 기판 두께와 불균일한 도금과 같은 넓은 빈 공간으로 인한 결함을 방지하기 위해 내층과 외층 모두에 동박 채우기를 패널에 추가합니다. 동박 채우기는 핸들링 스트립, 브리지 피스 및 PCB 단위 외부의 기타 영역에만 추가됩니다. 유효한 PCB 내부에는 동박이 추가되지 않습니다. 피듀셜, 기구 홀, 마우스 바이트, V-컷 주변에는 간격이 추가됩니다.
지속적인 성장
PCB 보드에서 커버레이의 중요성 이해하기
소개: 빠르게 진화하는 전자 산업에서 인쇄 회로 기판(PCB)의 중요성은 매우 큽니다. 이러한 핵심 요소는 거의 모든 전자 기기의 중추 역할을 합니다. PCB의 성능과 내구성을 크게 향상시키는 핵심 특징 중 하나는 커버레이(coverlay)입니다. 이 글에서는 PCB 기판에서 커버레이의 역할, 장점, 혁신에 대해 자세히 살펴봅니다. 커버레이란 무엇인가요? 커버레이(coverlay)는 커버 필름(cover film)이라고도 하며, 주로 유연한 PCB에 사용되는 보호층입니다. 경직된 PCB에 사용되는 기존의 솔더 마스크와 달리, 커버레이는 우수한 절연 및 보호 기능을 제공합니다. 폴리이미드(polyimide)로 만든 유연한 유전체 필름과 접착제로 라미네이트(laminate)된 구조로 이루어져 있습니다. ⦁ PCB 기판에서 커버레이의 역할 향상된 회로 보호: 커버레이는 섬세한 회로를 습기, 먼지, 화학물질 같은 환경 요인으로부터 견고하게 보호하여 전자 기기의 수명과 신뢰성을 보장합니다. ⦁ 최적의 ......
PCB 기본 1: 인쇄 회로 기판(PCB) 소개
"PCB 기초" 시리즈의 첫 번째 기사에 오신 것을 환영합니다. 이 시리즈에서는 인쇄 회로 기판(PCB)의 기본적인 측면과 현대 전자기기 세계에서의 중요한 역할을 탐구하는 여정을 시작하게 됩니다. 이 기사에서는 PCB의 중요성에 대해 깊이 알아보고, PCB를 구성하는 복잡한 부품과 구조를 분석하며, 설계 과정이 PCB 제조에 미치는 깊은 영향을 소개할 것입니다. PCB 기술의 핵심을 파악하고, 이 기술이 우리가 일상적으로 사용하는 기기들을 어떻게 작동하게 하는지 알아봅시다. 현대 전자 기기에서 PCB의 중요성 현대 전자 기기의 빠른 발전 속에서 PCB는 제품이 우리 생활에 필수적인 부분이 되도록 하는 핵심 요소입니다. 그 중요성을 알아봅시다. 복잡한 기능 구현 : PCB는 전자 기기의 기초 역할을 하여 다양한 부품을 통합하고 우리가 요구하는 복잡한 기능을 가능하게 합니다. 성능 및 신뢰성 향상 : 최적의 레이아웃 설계와 회로 최적화를 통해 PCB는 효율적인 신호 흐름을 보장하고 간섭을 최소화하......
FR4는 당신의 디자인에 가장 적합한 보드 재료인가요?
전자 제품 및 인쇄 회로 기판 제조 분야에서 설계에 적합한 기판 소재를 선택하는 것은 성공과 실패의 차이를 만들 수 있습니다. FR4 기판은 뛰어난 기계적 강도, 전기 절연성, 열 및 화학 물질에 대한 저항성으로 업계에서 널리 사용됩니다. 이 글에서는 FR4 기판의 특성과 장점, 인쇄 회로 기판에서의 사용, 그리고 일부 한계와 올바른 FR4 소재 선택을 위한 팁을 살펴보겠습니다. FR4 기판 소재란? FR4 기판은 "Flame Retardant 4(난연성 4등급)"의 약자로, FR4 기판이 화염 전파에 저항하고 특정 화재 안전 기준을 충족하도록 제작되었음을 나타냅니다. FR4 난연 장치는 전자 제품이나 전기 시스템과 같이 화재 안전이 우려되는 곳에서 사용되며, 난연성은 화재 사고 위험이 있는 곳에서 추가적인 안전 장치 역할을 합니다. 이 유형의 기판은 전기 부품 제조에 사용되며 인쇄 회로 기판 제조에 널리 사용됩니다. 이 기판은 에폭시 수지와 함께 기계적 강도를 제공하는 유리 섬유를 주요 구성......
후동 PCB: 이점과 응용에 대한 개요
인쇄 회로 기판(PCB)은 현대 전자 제품의 근간으로, 전자 부품의 연결과 전기 신호 전송을 위한 플랫폼을 제공합니다. 고성능 및 신뢰성 있는 전자 기기에 대한 수요가 증가함에 따라 제조업체들은 PCB의 전반적인 성능과 내구성을 향상시킬 방법을 끊임없이 모색하고 있습니다. 후동 PCB는 표준 PCB에 비해 여러 가지 장점을 제공하는 특수한 유형의 PCB입니다. 표준 PCB에 비해 더 두꺼운 동박 레이어를 갖도록 설계되어 더 높은 전류 운반 용량, 향상된 열 관리, 강화된 내구성을 제공합니다. 이 글에서는 현대 전자 제품에서 후동 PCB의 장점과 적용 분야에 대해 알아보겠습니다. 후동 PCB란? 후동 PCB는 표준 PCB보다 더 두꺼운 동박 레이어를 갖도록 설계된 기판입니다. 후동 PCB의 동박 레이어 두께는 3oz에서 20oz 이상까지 다양하며, 표준 PCB는 일반적으로 1oz입니다. 더 두꺼운 동박 레이어는 더 높은 전류 운반 용량, 향상된 열 관리, 강화된 내구성을 제공하여 고전력 애플리케......
PCB에 사용되는 재료 이해: 선택, 유형 및 중요도
인쇄 회로 기판(PCB)은 현대 전자 제품의 필수 구성 요소입니다. 이 기판들은 전자 부품을 연결하고 지지하며, 전기 신호와 전력 전달을 위한 안정적인 플랫폼을 제공합니다. 일반적인 PCB는 여러 층의 소재가 적층되어 단일 유닛을 형성합니다. PCB는 전자 제품 제조 공정의 핵심 부품입니다. 소비자 가전부터 자동차 및 항공우주 애플리케이션에 이르기까지 모든 분야에서 사용되며, 전자 기기의 기능에 필수적입니다. PCB에 사용되는 소재 유형 1. 기판(Substrate) 기판은 PCB의 베이스 소재로, 다른 소재들이 적층되는 기초 역할을 합니다. 기판은 일반적으로 FR-4라고도 알려진 유리 섬유 강화 에폭시 수지로 만들어집니다. 다른 유형의 기판으로는 CEM-1, CEM-3, 폴리이미드(PI), 로저스(Rogers)가 있습니다. 기판 선택은 작동 온도, 절연 내력, 비용과 같은 특정 요구 사항에 따라 달라집니다. 기판 선택의 일반적인 기준은 다음과 같습니다: - 유전 상수: 유전 상수는 기판의 전......
표준 PCB 두께 알아보기: PCB 프로토타입에 이상적인 두께 선택을 위한 단계별 가이드
인쇄 회로 기판(PCB)의 두께는 작은 세부 사항처럼 보일 수 있지만, 전자 기기의 성능과 신뢰성에서 중요한 역할을 합니다. 표준 PCB 두께는 기계적 안정성, 전기적 성능, 열 관리, 부품 호환성에 영향을 미치는 다양한 이점을 제공하는 업계 표준이 되었습니다. 이 글에서는 PCB의 다양한 두께가 왜 중요한지 자세히 살펴보고, 기기의 신뢰성을 높이고 성능을 향상시키는 특정 애플리케이션에 적합한 두께를 선택하는 가이드를 제공합니다. 표준 PCB 두께란? 표준 PCB 두께는 회로 기판에 일반적으로 사용되고 선호되는 두께를 말합니다. 공식적인 단일 표준은 없지만, 업계에서 널리 채택된 일반적인 크기가 있습니다. 역사적으로 표준 PCB 두께는 1.57mm 또는 약 0.062인치였으며, 이는 초기 기판 제조에 사용된 베이클라이트 시트의 크기에서 유래했습니다. 더 작은 두께 옵션이 있음에도 불구하고 이 표준은 확립된 역사와 기존 제조 공정과의 호환성으로 인해 계속해서 일반적인 선택입니다. 오늘날 0.03......