금속 코어 PCB 재료: 열에 대한 사실 및 디자인 규칙
2 분
메탈 코어 PCB(MCPCB)는 표준 FR-4 대신 금속 기판을 사용하는 특수 보드입니다. 이 금속 코어는 내장형 방열판 역할을 하여 고출력 전자기기에서 열 방출을 개선합니다. 기본 스택업은 다음과 같이 단순합니다:
- 상단의 구리 도체 층
- 중간의 얇은 절연 유전체
- 하단의 두꺼운 금속 베이스
이 구조는 뛰어난 열 확산과 편리한 그라운드 플레인을 제공합니다. 하지만 일반적인 FR-4보다 훨씬 무겁고 비용이 높다는 단점이 있습니다. MCPCB는 LED 조명과 전원 공급 장치에 널리 사용되며, 부품에서 많은 열이 발생하는 애플리케이션에 적합합니다. 이 글에서는 다양한 코어 금속에 대한 잘못된 상식을 바로잡고, 유전체 층이 실제로 열 흐름을 어떻게 제어하는지 설명하며, 실제 열전도율 수치를 비교해 보겠습니다.
"메탈 코어 PCB 재료"의 실제 의미
금속은 보드의 구조적 베이스를 형성하면서 동시에 거대한 방열판 역할을 합니다. 구리 층은 일반적으로 1–3 oz이며 상단에서 회로 트레이스를 전달합니다. 그 아래에는 일반적으로 25–100 µm 두께의 얇은 유전체가 있어 구리와 금속을 전기적으로 절연합니다. 마지막으로 하단은 열을 측면으로 확산시키는 1.0–3.2 mm 두께의 알루미늄 플레이트인 금속 코어입니다.
알루미늄의 열전도율은 150–235 W/mK이고, 구리는 380–400 W/mK입니다. 이 두 금속 베이스는 FR-4(0.3 W/mK)보다 훨씬 빠르게 열을 전달할 수 있습니다.
구리 코어 보드는 매력적으로 보이지만, 구리는 무겁고 비쌉니다. 따라서 거의 모든 MCPCB는 알루미늄을 대신 사용합니다. 스틸 코어 PCB는 기계적 강도나 EMI 차폐를 위해 존재하지만, 열 성능은 훨씬 떨어집니다. 금속 코어는 기계적 지지를 제공하고 자연스러운 그라운드 플레인/차폐 역할을 합니다. 까다로운 부분은 열이 먼저 얇은 유전체 절연층을 통과해야 한다는 것입니다. 다음 섹션에서 유전체 층이 왜 실제 열 병목인지 살펴보겠습니다.
알루미늄 vs 구리 vs 스틸 코어 – 구조와 잘못된 상식
| 재료 | 열전도율 (W/m·K) |
| FR-4 (에폭시 유리) | 0.3 |
| 알루미늄 | 150 – 235 |
| 구리 | 380 – 400 |
| 스틸 | 20 - 60 |
알루미늄 코어 (Al): 알루미늄은 비교적 저렴하고 가벼우며 열전도율이 좋습니다. 대부분의 일반 MCPCB는 1.0–1.6 mm Al 베이스를 사용합니다. 알루미늄의 열 성능은 구리만큼 높지 않지만, 보통 충분합니다. 설계자들은 일반 조명 및 소비자용 전력 전자기기에 알루미늄 MCPCB를 선호합니다.
구리 코어 (Cu): 매우 높은 열전도율로 인해 구리는 매력적인 열 확산재입니다. 이론적으로 절연층이 없는 구리 코어 보드는 다이를 구리에 직접 부착하는 것을 의미합니다. 실제로 구리 MCPCB는 드물고 비싸며 더 무겁습니다. JLCPCB는 칩을 구리 플레이트에 직접 장착하는 특별한 '구리 PCB' 서비스도 제공합니다.
스틸 코어: 스틸은 초강력이거나 자성 보드가 필요한 경우에만 사용됩니다. 열전도율이 훨씬 낮습니다. 즉, 스틸 코어 보드는 알루미늄 보드보다 더 뜨겁게 작동합니다. 특별한 기계적 요구 사항이 있는 경우에만 스틸 코어를 사용하고, 그 경우에도 열 확산 성능이 떨어질 것으로 예상하세요.
유전체 층의 역할 (실제 열 브릿지)
일반적으로 50–150 µm 두께의 얇은 유전체/절연층이 뜨거운 구리 회로와 금속 베이스 사이에 있습니다. 이 층은 구리를 금속으로부터 전기적으로 절연하지만, 동시에 열 흐름을 크게 제한합니다. 실제로 유전체는 보통 MCPCB에서 가장 큰 열 병목입니다. 많은 사람들이 이 점을 잊습니다: 금속 위의 구리는 반짝거려 보이지만, 그 사이에는 항상 끈적끈적한 접착제가 있습니다. 이것의 열전도율은 5–10 W/mK에 불과합니다.
결과적으로: 기존 MCPCB(표준 유전체 사용)는 전체적으로 수 W/mK만 달성합니다. 특수 세라믹 충전 유전체를 사용한 초고성능 IMS 보드만이 10 W/mK 이상을 달성할 수 있습니다. 극한의 열전도율이 필요한 경우, 설계자들은 때때로 COB-MCPCB(Chip-On-Board 메탈 코어 PCB)에서 절연을 완전히 생략합니다. 여기서 다이는 금속 베이스에 직접 접착되어 열이 금속의 전체 전도율을 경험합니다. 이를 통해 200 W/mK 이상의 효과적인 열전도율을 달성할 수 있습니다.
신뢰할 수 있는 열 성능 수치
MCPCB를 평가하거나 비교할 때는 원래 금속 수치가 아닌 측정된 전도율 수치에 의존하세요. 몇 가지 주요 열 수치는 아래와 같습니다:
| 카테고리 | 열전도율 (W/m·K) |
| 유전체 (MCPCB 절연) | 1–10 (프리미엄) |
| 알루미늄 베이스 | 138–235 |
| 구리 베이스 | 380–400 |
| 전체 MCPCB 스택 | 1–4 |
두께가 중요한 이유: 더 두꺼운 금속 베이스는 열을 흡수할 더 많은 체적과 가장자리로의 약간 낮은 열저항 경로를 가집니다. 그러나 열은 여전히 주로 플레이트 평면에서 측면으로 흐릅니다. 열원이 작으면 1mm 플레이트도 열을 넓게 확산시킵니다. 2mm로 두 배로 늘려도 핫스팟 온도는 약간만 낮아질 수 있습니다. 하지만 질량이 증가하므로 보드가 더 천천히 가열됩니다.
사용 가능한 메탈 코어 PCB 재료 등급 (2025)
실용적인 관점에서 MCPCB 보드는 절연층 전도율에 따라 등급으로 분류됩니다:
- 표준 (1–3 W/m·K): 기본 MCPCB는 일반 FR-4 기반 유전체나 단순 필러를 사용합니다. 이들은 대략 1–3 W/m·K의 열전도율을 달성합니다.
- 중급 (3–6 W/m·K): 더 나은 보드는 특수 폴리머나 실리콘 층을 사용하여 전도율을 수 W/m·K까지 높입니다. 이들은 자동차 모듈이나 산업용 컨버터에 사용됩니다.
- 고성능 (6–12+ W/m·K): 최첨단 MCPCB는 세라믹 필러 또는 세라믹 베이스를 사용한 고성능 절연 금속 기판(IMS)을 사용합니다. 질화알루미늄이나 산화알루미늄 세라믹 층과 같은 재료가 보드의 열전도율을 높은 한 자릿수나 낮은 두 자릿수까지 끌어올립니다.
전문가와 타버린 보드를 구분하는 설계 규칙
올바른 재료를 사용해도 잘못된 레이아웃은 MCPCB를 망칠 수 있습니다. 다음은 중요한 규칙입니다:
비아 타입 (스루홀, 블라인드, 써멀) 및 전류 한계
| 비아 타입 | MCPCB에서의 용도 |
| 스루홀 비아 | 신호, 장착 |
| 블라인드 / 매립 비아 | 드묾/비실용적 |
| 써멀 비아 | 열 전달 전용 |
| 비아 인 패드 | 열 최적화 |
전류 용량: 대략적인 가이드로, 0.254 mm 트레이스에서 1 oz 구리는 1 A를 전달합니다. 50–200 W를 처리하는 MCPCB의 경우 수십 암페어를 예상하세요. 15–20 A를 지속적으로 전달하려면 수 밀리미터 폭의 트레이스가 필요합니다.
최소 유전체 두께 vs 전압 등급
절연층은 전기적 요구 사항도 충족해야 합니다. 업계 경험 법칙은 유전체 밀리미터당 2–3 kV입니다. JLCPCB의 사양에는 3000 V 절연파괴 전압을 가진 1.0 mm Al-MCPCB가 나열되어 있습니다. 더 두꺼운 유전체는 대략 비례하여 절연파괴 전압을 증가시킵니다.
항상 제조업체의 절연파괴 사양을 확인하세요. 설계에 높은 절연 요구 사항이 있는 경우 더 두꺼운 코어나 추가 절연 갭을 사용하세요. 금속 베이스가 접지된 경우 솔더마스크나 배리어가 구리와 베이스 간의 아크 발생을 방지하도록 하세요.
50–200 W 애플리케이션을 위한 구리 중량 및 트레이스 폭
수십 와트를 처리한다는 것은 고전류를 의미합니다. 다음은 일반적인 설계 선택입니다:
구리 중량: 헤비 구리는 트레이스 저항을 크게 줄입니다. 메탈 코어 스택에서 구리는 상단에만 있습니다. 따라서 더 두꺼운 포일은 전도를 직접 개선하고 I²R 손실을 줄입니다. 헤비 구리 애플리케이션(2 oz, 3 oz 또는 그 이상)은 특수 처리가 필요하며, 이로 인해 비용이 증가합니다.
트레이스 폭: IPC 데이터에 따르면 2 oz에서 6.35 mm 트레이스는 20 A를 전달할 수 있습니다(20°C 상승 시). 항상 IPC 트레이스-전류 차트를 참조하세요.
써멀 비아 / 플레인: 양면 MCPCB를 사용하는 경우 고전류를 양면에 분산시키세요. 단면 보드에서는 본질적으로 하나의 도체 층만 있으므로 자체가 "방열판"이 됩니다.
제조 한계 및 비용 요인
MCPCB가 FR4보다 2–4배 더 비싼 이유
대부분의 PCB 구매자는 MCPCB 견적이 충격적으로 높다는 것을 알게 됩니다. 실제로 업계 가이드에서는 MCPCB가 일반 FR-4 보드 가격의 대략 2–4배라고 합니다:
재료 비용: 알루미늄 시트와 고-k 유전체는 동일 면적의 FR-4 라미네이트보다 평방미터당 몇 배 더 비쌉니다.
공정 복잡성: 금속 코어를 통한 드릴링은 특수 비트가 필요하며, 금속-유전체-구리를 강력하게 열 접합하는 추가 공정이 수반됩니다.
물량 및 전문성: 대중적인 FR-4와 달리 MCPCB는 특수 장비가 필요하며 규모의 경제가 상대적으로 부족합니다.
MCPCB vs FR4 + 방열판 vs 세라믹 선택 시기
| 솔루션 | 예시 비용 (일반적) | 대략적 열 용량 | 와트당 비용 |
| FR4 PCB + 방열판 | $15 | 50 W | $0.30/W |
| 알루미늄 MCPCB | $25 | 150 W | $0.17/W |
| 고급 세라믹 PCB | $100 | 200 W | $0.50/W |
전력 및 열 플럭스 추정: 총 전력이 50 W를 초과하거나 공간이 협소하여 외부 방열판을 달기 어렵다면 MCPCB가 가장 효율적인 선택입니다.
공간 및 통합: MCPCB는 방열 기능을 보드 자체에 통합하므로 최종 제품의 부피를 획기적으로 줄일 수 있습니다.
60초 플로우차트:
결론
메탈 코어 PCB는 고출력 전자기기의 열 관리를 위한 강력한 도구입니다. 요구 전압에 맞춰 유전체를 충분히 두껍게 유지하고 써멀 비아를 올바르게 배치하는 등 핵심 규칙을 따르세요. 보드가 타버리지 않도록 암페어에 맞게 트레이스 크기를 조정하세요. JLCPCB의 표준 알루미늄 MCPCB(최대 1.6 mm)는 대중적인 조명 모듈에 가장 적합한 밸런스를 제공합니다.
PCB 설계에서 진정으로 최대의 열 관리가 필요하다면 고성능 IMS 또는 직접 접합 세라믹 보드를 살펴보세요. 위의 가이드라인을 따르고 실제 사양서를 참조하면 최적의 보드 타입을 선택할 수 있습니다.
지속적인 성장
PCB 보드에서 커버레이의 중요성 이해하기
소개: 빠르게 진화하는 전자 산업에서 인쇄 회로 기판(PCB)의 중요성은 매우 큽니다. 이러한 핵심 요소는 거의 모든 전자 기기의 중추 역할을 합니다. PCB의 성능과 내구성을 크게 향상시키는 핵심 특징 중 하나는 커버레이(coverlay)입니다. 이 글에서는 PCB 기판에서 커버레이의 역할, 장점, 혁신에 대해 자세히 살펴봅니다. 커버레이란 무엇인가요? 커버레이(coverlay)는 커버 필름(cover film)이라고도 하며, 주로 유연한 PCB에 사용되는 보호층입니다. 경직된 PCB에 사용되는 기존의 솔더 마스크와 달리, 커버레이는 우수한 절연 및 보호 기능을 제공합니다. 폴리이미드(polyimide)로 만든 유연한 유전체 필름과 접착제로 라미네이트(laminate)된 구조로 이루어져 있습니다. ⦁ PCB 기판에서 커버레이의 역할 향상된 회로 보호: 커버레이는 섬세한 회로를 습기, 먼지, 화학물질 같은 환경 요인으로부터 견고하게 보호하여 전자 기기의 수명과 신뢰성을 보장합니다. ⦁ 최적의 ......
PCB 기본 1: 인쇄 회로 기판(PCB) 소개
"PCB 기초" 시리즈의 첫 번째 기사에 오신 것을 환영합니다. 이 시리즈에서는 인쇄 회로 기판(PCB)의 기본적인 측면과 현대 전자기기 세계에서의 중요한 역할을 탐구하는 여정을 시작하게 됩니다. 이 기사에서는 PCB의 중요성에 대해 깊이 알아보고, PCB를 구성하는 복잡한 부품과 구조를 분석하며, 설계 과정이 PCB 제조에 미치는 깊은 영향을 소개할 것입니다. PCB 기술의 핵심을 파악하고, 이 기술이 우리가 일상적으로 사용하는 기기들을 어떻게 작동하게 하는지 알아봅시다. 현대 전자 기기에서 PCB의 중요성 현대 전자 기기의 빠른 발전 속에서 PCB는 제품이 우리 생활에 필수적인 부분이 되도록 하는 핵심 요소입니다. 그 중요성을 알아봅시다. 복잡한 기능 구현 : PCB는 전자 기기의 기초 역할을 하여 다양한 부품을 통합하고 우리가 요구하는 복잡한 기능을 가능하게 합니다. 성능 및 신뢰성 향상 : 최적의 레이아웃 설계와 회로 최적화를 통해 PCB는 효율적인 신호 흐름을 보장하고 간섭을 최소화하......
FR4는 당신의 디자인에 가장 적합한 보드 재료인가요?
전자 제품 및 인쇄 회로 기판 제조 분야에서 설계에 적합한 기판 소재를 선택하는 것은 성공과 실패의 차이를 만들 수 있습니다. FR4 기판은 뛰어난 기계적 강도, 전기 절연성, 열 및 화학 물질에 대한 저항성으로 업계에서 널리 사용됩니다. 이 글에서는 FR4 기판의 특성과 장점, 인쇄 회로 기판에서의 사용, 그리고 일부 한계와 올바른 FR4 소재 선택을 위한 팁을 살펴보겠습니다. FR4 기판 소재란? FR4 기판은 "Flame Retardant 4(난연성 4등급)"의 약자로, FR4 기판이 화염 전파에 저항하고 특정 화재 안전 기준을 충족하도록 제작되었음을 나타냅니다. FR4 난연 장치는 전자 제품이나 전기 시스템과 같이 화재 안전이 우려되는 곳에서 사용되며, 난연성은 화재 사고 위험이 있는 곳에서 추가적인 안전 장치 역할을 합니다. 이 유형의 기판은 전기 부품 제조에 사용되며 인쇄 회로 기판 제조에 널리 사용됩니다. 이 기판은 에폭시 수지와 함께 기계적 강도를 제공하는 유리 섬유를 주요 구성......
후동 PCB: 이점과 응용에 대한 개요
인쇄 회로 기판(PCB)은 현대 전자 제품의 근간으로, 전자 부품의 연결과 전기 신호 전송을 위한 플랫폼을 제공합니다. 고성능 및 신뢰성 있는 전자 기기에 대한 수요가 증가함에 따라 제조업체들은 PCB의 전반적인 성능과 내구성을 향상시킬 방법을 끊임없이 모색하고 있습니다. 후동 PCB는 표준 PCB에 비해 여러 가지 장점을 제공하는 특수한 유형의 PCB입니다. 표준 PCB에 비해 더 두꺼운 동박 레이어를 갖도록 설계되어 더 높은 전류 운반 용량, 향상된 열 관리, 강화된 내구성을 제공합니다. 이 글에서는 현대 전자 제품에서 후동 PCB의 장점과 적용 분야에 대해 알아보겠습니다. 후동 PCB란? 후동 PCB는 표준 PCB보다 더 두꺼운 동박 레이어를 갖도록 설계된 기판입니다. 후동 PCB의 동박 레이어 두께는 3oz에서 20oz 이상까지 다양하며, 표준 PCB는 일반적으로 1oz입니다. 더 두꺼운 동박 레이어는 더 높은 전류 운반 용량, 향상된 열 관리, 강화된 내구성을 제공하여 고전력 애플리케......
PCB에 사용되는 재료 이해: 선택, 유형 및 중요도
인쇄 회로 기판(PCB)은 현대 전자 제품의 필수 구성 요소입니다. 이 기판들은 전자 부품을 연결하고 지지하며, 전기 신호와 전력 전달을 위한 안정적인 플랫폼을 제공합니다. 일반적인 PCB는 여러 층의 소재가 적층되어 단일 유닛을 형성합니다. PCB는 전자 제품 제조 공정의 핵심 부품입니다. 소비자 가전부터 자동차 및 항공우주 애플리케이션에 이르기까지 모든 분야에서 사용되며, 전자 기기의 기능에 필수적입니다. PCB에 사용되는 소재 유형 1. 기판(Substrate) 기판은 PCB의 베이스 소재로, 다른 소재들이 적층되는 기초 역할을 합니다. 기판은 일반적으로 FR-4라고도 알려진 유리 섬유 강화 에폭시 수지로 만들어집니다. 다른 유형의 기판으로는 CEM-1, CEM-3, 폴리이미드(PI), 로저스(Rogers)가 있습니다. 기판 선택은 작동 온도, 절연 내력, 비용과 같은 특정 요구 사항에 따라 달라집니다. 기판 선택의 일반적인 기준은 다음과 같습니다: - 유전 상수: 유전 상수는 기판의 전......
표준 PCB 두께 알아보기: PCB 프로토타입에 이상적인 두께 선택을 위한 단계별 가이드
인쇄 회로 기판(PCB)의 두께는 작은 세부 사항처럼 보일 수 있지만, 전자 기기의 성능과 신뢰성에서 중요한 역할을 합니다. 표준 PCB 두께는 기계적 안정성, 전기적 성능, 열 관리, 부품 호환성에 영향을 미치는 다양한 이점을 제공하는 업계 표준이 되었습니다. 이 글에서는 PCB의 다양한 두께가 왜 중요한지 자세히 살펴보고, 기기의 신뢰성을 높이고 성능을 향상시키는 특정 애플리케이션에 적합한 두께를 선택하는 가이드를 제공합니다. 표준 PCB 두께란? 표준 PCB 두께는 회로 기판에 일반적으로 사용되고 선호되는 두께를 말합니다. 공식적인 단일 표준은 없지만, 업계에서 널리 채택된 일반적인 크기가 있습니다. 역사적으로 표준 PCB 두께는 1.57mm 또는 약 0.062인치였으며, 이는 초기 기판 제조에 사용된 베이클라이트 시트의 크기에서 유래했습니다. 더 작은 두께 옵션이 있음에도 불구하고 이 표준은 확립된 역사와 기존 제조 공정과의 호환성으로 인해 계속해서 일반적인 선택입니다. 오늘날 0.03......