보더 레이어(Border Layer) 두께 : PCB 치수 및 V-홈에 미치는 영향
1 분
PCB 설계에서 보더 레이어 두께가 미치는 영향을 이해하는 것은 매우 중요합니다. 이번 블로그 포스트에서는 예시를 통해 보더 레이어의 다양한 라인 폭이 최종 보드 치수와 패널화 과정에서 V-홈의 두께에 어떤 영향을 미치는지 자세히 살펴보겠습니다.
예시 시나리오
Board Layer에서 보더 레이어에 각각 0.1mm와 1.0mm의 두 가지 다른 라인 폭이 있다고 가정해봅시다. 이제 다음 질문을 다루어 보겠습니다:
최종 보드의 치수가 달라질까요?
아닙니다. Border Line의 두께는 보드의 전체 치수에 직접적인 영향을 미치지 않습니다. Border Layer의 선 너비가 어떻든 간에, 모든 절단은 Border Line의 중심선(Centerline)을 기준으로 진행됩니다. 따라서 보드의 너비와 길이는 항상 일정하게 유지됩니다.
패널화 과정에서, V-홈(V-grooves)의 두께가 테두리 층의 두께에 따라 달라질까요?
아니요, V-홈의 두께는 보더 레이어의 두께에 의해 결정되지 않습니다. V-홈은 미리 정의된 사양에 따라 절단되며, 보더 레이어 두께와 무관하게 절단됩니다. 이는 패널 전체에서 균일한 V-홈 두께를 보장합니다.
모양 및 홈 처리
전체적인 이해를 돕기 위해 이러한 상황에서 형상과 홈이 어떻게 처리되는지 설명하겠습니다.
보드 내부에 그려진 모양
보드 내에서 컷아웃이나 내부 형태(feasures)와 같은 모양을 디자인할 때 일반적으로 선의 중심선을 기준으로 라우팅합니다. 모양의 실제 너비는 경계선(boarder line)의 너비와 관계없이 라우팅 도구에 의해 결정됩니다.
홈을 나타내기 위해 사용되는 실선
채워진 다각형이나 구리 주입(copper pours)을 포함한 솔리드 모양의 경우, 그려진 모양의 실제 너비를 기준으로 제조됩니다. 테두리 층(border layer)의 두께는 PCB의 내부 솔리드 모양의 치수에 영향을 미치지 않습니다.
결론
이 예시에서 우리는 PCB 설계의 Board Layer에 대한 다양한 선폭의 영향을 살펴보았습니다. 보더 라인의 두께가 보드 치수에 영향을 미치지 않으며, 모든 절단은 보더 라인의 중심선을 기준으로 한다는 것을 알게 되었습니다. 또한, V-홈은 보더 레이어 두께와 무관하게 미리 정의된 사양에 따라 절단됩니다.
이러한 개념을 이해하는 것은 PCB를 정확하게 설계하는 데 중요합니다. 보더 레이어 두께, 보드 치수, V-홈 간의 관계를 고려함으로써 PCB 제작 과정에서 원하는 결과를 얻을 수 있습니다. JLCPCB는 이번 예시가 이 주제에 대한 이해를 돕는 데 기여했기를 바랍니다. PCB 설계와 관련하여 추가 질문이 있거나 도움이 필요하다면 언제든지 연락해 주세요.
<바로 견적 받기>
지속적인 성장
거버 파일: PCB 제조의 핵심, JLCPCB와 함께
PCB 제조에서 거버 파일은 여러분의 설계가 정확하게 실물 기판으로 구현되도록 이끌어주는 필수 지침서입니다. 이 파일들은 제조사에 설계의 모든 세부 사항을 전달하는 '제조 설계도' 역할을 하죠. 업계를 선도하는 PCB 제조사 JLCPCB는 실시간 거버 파일 분석 시스템을 운영하여 업로드와 동시에 정확한 온라인 견적을 제공합니다. 또한, 무료 거버 뷰어를 통해 파일이 제조 표준에 완벽히 부합하는지 무료로 점검할 수 있는 기회를 드립니다. 번거로운 수동 검증 과정은 이제 그만! JLCPCB의 자동화된 분석 시스템으로 시간을 절약하세요. 완벽한 거버 파일은 성공적인 전자 프로젝트의 첫걸음입니다. 이 글에서는 거버 파일을 올바르게 생성하는 방법과 거버 뷰어의 중요성에 대해 자세히 알아보겠습니다. 1. 올바른 거버 파일 생성 가이드 거버 파일을 생성하려면 KiCAD, Altium, DipTrace, EasyEDA와 같은 전문 PCB CAD 소프트웨어를 사용해야 합니다. 파일을 내보낼 때는 모든 레이어 ......
레이저로 제작한 PCB의 빠른 프로토타이핑 활용 방법
빠르게 변화하는 전자 개발 분야에서 빠른 프로토타이핑은 설계 주기를 단축하고 제품을 신속하게 시장에 출시하기 위해 매우 중요합니다. 기존의 PCB 제조 방식은 시간과 비용이 많이 들며, 특히 소량 생산이나 시제품 설계에서는 더욱 그렇습니다. 전문가 수준으로 가정에서도 PCB를 제작하는 다양한 방법이 있지만, 그중 일부는 화학 공정이나 포토리소그래피 단계를 요구하고, 나머지 방법은 대형 장비가 필요해 실용적이지 않습니다. 그러나 레이저 기술의 발전은 PCB 프로토타이핑에 혁신을 가져왔으며, 더욱 빠른 제작 시간과 정밀도를 제공합니다. 레이저는 PCB 제조 과정의 여러 단계를 정밀하게 제어할 수 있습니다. 예를 들어: • 레이저 인그레이빙(Laser Engraving): 회로 패턴을 만들기 위해 선택적으로 구리를 제거 • 레이저 커팅(Laser Cutting): PCB 기판을 원하는 형태와 크기로 정밀하게 절단 • 레이저 드릴링(Laser Drilling): 극도의 정확도로 마이크로비아 및 홀을 ......
PCB 비아 텐팅 이해하기: 설계 팁과 모범 사례
PCB(인쇄회로기판)에 익숙하다면 ‘비아 텐팅(via tenting)’이라는 용어를 들어본 적이 있을 것입니다. 비아 텐팅은 PCB 제조에서 매우 중요한 기술로, 최종 제품의 성능, 내구성, 신뢰성에 큰 영향을 미칩니다. 그렇다면 PCB 비아 텐팅이 정확히 무엇이고, 왜 중요한 걸까요? 이 글에서는 비아 텐팅의 개념, 장점, 사용 시기, 그리고 PCB 설계 및 제조에 미치는 영향에 대해 자세히 설명합니다. 글을 다 읽고 나면 비아 텐팅이 왜 중요한지, 그리고 어떻게 PCB 품질을 향상시킬 수 있는지 명확히 알게 될 것입니다. PCB 비아 텐팅이란? PCB에서 비아 텐팅은 ‘비아(via)’라 불리는 작은 구멍을 얇은 재료 층으로 덮거나 밀봉하는 방법을 뜻합니다. 이 방법은 비아를 습기, 먼지 등 외부 요소로부터 보호하고, 제조 과정에서 납땜이 비아 구멍 속으로 흘러드는 것을 방지합니다. 기본적으로 텐팅은 솔더 마스크(solder mask)를 사용해 PCB의 구멍을 덮는 기술입니다. 비아는 PCB......
PCB 설계에서의 카운터싱크 홀
인쇄회로기판(PCB) 설계 시, 엔지니어들은 부품을 장착하거나 커넥터를 부착하기 위해 보드에 홀을 뚫어야 하는 경우가 많습니다. 이때 흔히 사용되는 홀 형태가 카운터싱크와 카운터보어 입니다. 겉보기에는 비슷해 보일 수 있지만, 두 홀 형태는 PCB 설계에 있어 중요한 차이점이 있습니다. 이 용어들은 CNC 가공에서도 자주 사용되는데, 보통 카운터싱크는 원뿔 모양의 구멍이고, 카운터보어는 평평한 바닥을 가진 원통형 홀입니다. 이 글에서는 카운터싱크 홀과 카운터보어 홀의 주요 차이점을 살펴보고, PCB 설계에서 각각 어떻게 최적으로 활용되는지 논의하겠습니다. 카운터싱크는 60°, 82°, 90° 등 다양한 각도로 제작될 수 있으며, 카운터보어 홀은 측면이 평행하고 경사가 없습니다. 이번 글에서는 특히 카운터싱크 홀에 대해, 드릴링 과정과 적용 사례, 그리고 주요 설계 고려사항을 자세히 다루겠습니다. 카운터싱크 홀(Countersunk Hole)이란? 카운터싱크 홀은 드릴링 과정이 다소 까다로워 카......
기계가 바꾸는 PCB 실크스크린 인쇄의 새로운 기준
PCB(인쇄회로기판) 표면에 텍스트, 기호, 마크, 이미지 등을 인쇄한 층을 ‘실크스크린’이라고 부릅니다. 이는 부품 배치, 조립 안내, 부품 식별 등의 정보를 제공하는 중요한 공정으로, PCB 제조 과정에서 잉크나 잉크 유사 물질을 사용해 표면에 인쇄됩니다. 고품질 PCB 생산에 있어 정밀함과 정확성은 무엇보다 중요하며, 이를 위해 고도화된 실크스크린 인쇄 기계가 도입되고 있습니다. 최신 PCB 실크스크린 프린터는 첨단 기술을 적용해 인쇄 품질을 획기적으로 끌어올립니다. 자동 스텐실 정렬 기능, 압력 조절이 가능한 스퀴지, 정밀 제어 시스템 등 다양한 기능이 탑재되어 있어 복잡한 PCB 설계에도 안정적이고 일관된 인쇄 결과를 제공합니다. 또한, 이 기계는 생산성 향상을 목표로 설계된 자동화 솔루션으로, 수작업 개입 없이 연속적인 인쇄 작업이 가능합니다. 덕분에 제조 공정이 보다 효율적으로 이루어지고 인건비는 절감되며 생산 속도 또한 크게 향상됩니다. 다음 장에서는 PCB 실크스크린의 핵심적인......
고다층 PCB 제조 엔지니어링 가이드
전자기기의 고성능화와 소형화가 진행됨에 따라 PCB에 대한 정밀도와 성능 요구사항도 함께 증가하고 있습니다. 고다층 PCB는 더 많은 배선층을 제공하여 고주파, 고속 전송에 필요한 고밀도 복합 회로 설계를 가능하게 합니다. 또한 우수한 신호 무결성과 전자파 적합성을 구현할 수 있습니다. 이는 5G 통신, 고성능 컴퓨팅, 자동차 전장품과 같은 첨단 응용 분야에서 특히 중요한 요소입니다. 이러한 이유로 고다층 PCB는 PCB 산업의 미래를 이끌어갈 핵심 기술 중 하나로 자리잡았습니다. PCB 설계 엔지니어나 전자 하드웨어 설계 엔지니어에게는 고다층 PCB 제조 공정의 이해가 필수적입니다. 고다층 PCB는 단순히 층수를 증가시키는 것에 그치지 않습니다. 제조 난이도 역시 기하급수적으로 상승합니다. 단층 및 양면 기판과 비교할 때, 고다층 PCB 제조에는 층간 연결, 층간 적층 및 정렬, 정밀 라미네이션 제어 등에 특별한 주의가 요구됩니다. 설계 단계에서는 고다층 PCB의 성능 이점을 극대화하기 위해......