What is the Standard Thickness of a PCB?
6 min
A Printed Circuit Board (PCB) is the foundation of electronic devices, which serves as a substrate to support electrical components. In PCB design, thickness is a crucial parameter as it influences several key processes. It influences not only the mechanical performance of the board but also the electrical properties, processability, and cost. The prevailing PCB thickness is 1.6 mm, but there will be many further options suitable for various purposes. Knowing the rule and when it’s acceptable to break it regarding your PCB thickness can help designers make a decision that will keep your circuit board functioning as intended.
If you want to explore different PCB thickness options for your next project, you can easily customize them when placing an order at JLCPCB. Their instant online quote lets you compare prices and lead times across multiple thicknesses.
What Is the Standard PCB Thickness?
1.6mm (0.063 inch) is the most common standard PCB thickness. This dimension is the industry standard because it strikes a balance among the strength, manufacturability, and compatibility with most electronic assemblies. These are also widely used in PCB assemblies. A 1.6 mm board is rigid enough for handling, yet thin enough to fit into compact devices. However, 1.6 mm is not the only option. Other widely available thicknesses include:
- 0.8 mm – popular in compact consumer electronics.
- 1.0 mm – often used in handheld devices and small form factor boards.
- 2.0 mm to 2.4 mm – chosen when extra rigidity is needed.
- 3.2 mm – applied in power electronics and industrial boards where strength is critical.
They are available to meet different design goals, but 1.6 mm is still the go-to thickness for universal PCB manufacturing.
Factors That Determine PCB Thickness
Number of Layers
The number of layers in a PCB significantly impacts the assembly's overall thickness. In which a basic 2-layer PCB can be easily accommodated within just 1.6 mm. However, for more complex boards such as 4 Layer or high-speed controlled impedance design multilayer boards, we achieve the same thickness by adjusting the thickness of the internal dielectric and copper layers. In which the PCBs with 8-12 layers and even more can be produced for sophisticated designs within 1.6 mm, but the dielectric layer needs to become thinner. Above 12 layers, you often need to increase overall thickness to achieve enough durability and manufacturability.
Mechanical Strength
The thicker the PCB is, the harder it becomes, and it cannot bend or warp. They’re great for applications such as automotive electronics, industrial gear, or boards with many connectors that are likely to be handled roughly. In which thinner PCBs are mounted, where form factor and flexibility are more important think wearables, smartphones, or flexible PCBs. Proper proportion is vital for durability and type performance. Thermals of the PCB also change as per thickness.
Electrical Performance
PCB thickness also affects the electrical characteristics of the board. For example, the use of controlled impedance is critical for high-speed and/or high-frequency designs. In which the thicknesses of dielectric layers between copper planes directly affect signal quality and exchange, thus overall signal integrity. In which the designers also often speak with PCB fabricators to determine which stack-up and how much thickness is best for a specific application to achieve stable and reliable electrical performance.
Manufacturing Standards and Cost
A better alternative is to settle on a standard thickness such as 1.6 mm. It conforms to the PCB thickness of the IPC-2221 standard and is regularly used by most PCB fabrication houses. Moreover, these options are easier to acquire and make and cost less. Although it is possible to have thicker or thinner PCBs, these will increase lead times and overall PCB production costs.
Standard PCB Thickness Options and Applications
The following thickness ranges are commonly used in industry, each serving a different application.
| PCB Thickness | Typical Applications |
| 0.2–0.5 mm | Flexible PCBs, ultra-thin devices, compact sensors |
| 0.8–1.0 mm | Consumer electronics, handheld devices, compact modules |
| 1.6 mm (Standard) | General-purpose electronics, computers, and communication boards |
| 2.0–2.4 mm | Automotive PCBs, industrial controllers, and boards with heavy connectors |
| 3.2 mm | Power electronics and long-life industrial systems |
It reflects that 1.6 mm is the universal standard, yet designers maintain free choice of thickness according to performance and mechanical requirements.
How to Select the Right PCB Thickness
Consider Electrical Requirements
There is a demand for correct impedance control when designing high-speed PCBs. With thinner dielectrics in a 1.6 mm stack-up, signal traces maintain uniform impedance. Impedance affects and is proportional to propagation delay and signal loss, as in RF and high-frequency boards. Designers need to calculate impedance callouts before selecting the thickness.
Consider Mechanical Requirements
If your board is likely to experience physical stress, vibration, or connector mating, then you may benefit from increasing the thickness up to 2.0mm or above. Thinner boards are preferred, on the other hand, for portable or wearable devices and handheld equipment.
Consider Manufacturing & Cost
Some common thicknesses are also more readily available and cheap, such as 1.6mm/1.2mm. Custom configurations are sometimes required for unique projects, but they can typically come with higher fabrication costs and a larger lead count. We adhere to the industrial standard and acceptance, making it easier to trace the production.
PCB Thickness vs. Layer Count
Thicker boards do not necessarily imply more layers, which is a common misnomer. Actually, for a 1.6 mm thickness PCB, it can be up to even around 2 to 12 layers. Manufacturers vary the thickness of copper and dielectric layers to maintain a specific fit within the nominal dimensions.
- 2-layer PCB: Simple, low-cost, used in basic consumer electronics.
- 4-layer PCB: Common for devices requiring better EMI performance and power distribution.
- 6-layer PCB: Used in communication devices, computers, and moderately high-speed designs.
- 8–12 layers: High-density boards for networking, servers, and high-end FPGA boards.
If the layer count is above 12, the overall thickness usually becomes 2.0 mm to enable PCB fabrication and ensure PCB mechanical strengths.
Conclusion
It’s easy to dismiss the thickness of the PCB as trivial when first designing it; however, there are implications for mechanical strength, signal quality, layer stack-up sequencing, and even price. PCBs come in different thicknesses, the most popular being the 1.6 mm industry standard, but they can range from 0.2 mm up to 3.2 mm or above! The trade-off between performance and manufacturability, this thickness is the sweet spot for most applications.
Keep Learning
OPAMP 101: Basics of Operational Amplifiers Every Engineer Should Know
Analog mathematics? Yes, it is what we are going to learn in this series of OPAMP 101. An operational amplifier is the most common and most widely used type of component in an analog circuit. We can not imagine an integrated circuit without amplifiers. It is common, but students, on the other hand, often have a love-hate relationship: “How can something that looks so simple (just a triangle!) cause so much confusion?” An operational amplifier can perform a lot of mathematical operations; we will see t......
What is the Standard Thickness of a PCB?
A Printed Circuit Board (PCB) is the foundation of electronic devices, which serves as a substrate to support electrical components. In PCB design, thickness is a crucial parameter as it influences several key processes. It influences not only the mechanical performance of the board but also the electrical properties, processability, and cost. The prevailing PCB thickness is 1.6 mm, but there will be many further options suitable for various purposes. Knowing the rule and when it’s acceptable to break ......
Rogers vs PTFE vs Teflon: Choosing the Best PCB Laminate for High-Frequency Design
FR4, being the most popular one, is not always used in high-frequency PCBs because this PCB laminate can degrade the signal performance at high frequencies. Not because they consist of any wrong conduction material, but the reality lies in the substrate dielectric properties. The dielectric itself attenuates the signal at high frequency. So, after a lot of research in this area, we got some really good materials. The three alternatives for high-performance PCBs are Rogers, PTFE, and Teflon laminates. ......
How to Select the Best Materials for Your Flexible PCB Designs
Flexible printed circuit boards (Flex PCBs) have revolutionized the electronics industry. Now we can pack the circuit in a small housing space with highly compact, lightweight, and flexible form factors. FPCs are everywhere from wearable devices to medical implants and aerospace systems. These circuits rely on special materials that offer the right balance of mechanical flexibility and electrical performance. When designing a Flex PCB, choosing the right combination of substrates, adhesives, and coati......
Role of Prepreg in Multilayer PCB Manufacturing
A PCB stackup arrangement includes layers, planes, cores, base, substrate, laminate, and prepreg. From Core we can say FR4, Aluminum, Rogers and all. On the other hand prepregs are the dielectric material between the adjacent cores or the core and a layer. In multilayer PCBs, prepreg is a vital part that holds the PCB core and layers together. Once the difference between prepreg and core is clear, what exact material should you use for your application? How do the important electrical parameters chang......
Beyond the Basics: The Role of PTFE PCBs
Polytetrafluoroethylene (PTFE) PCBs are integral to advanced electronic applications. Among various PCB materials, Teflon, the brand name for Polytetrafluoroethylene (PTFE). Teflon PCBs, known for their high frequency and heat resistance properties. All of this is achievable due to its exceptional dielectric properties. RF PCB designs often make use of low-loss PTFE-based materials thanks to their very low dielectric losses and huge range of possible Dk values. Low Dielectric Constant: Enables high-sp......