Rogers vs PTFE vs Teflon: Choosing the Best PCB Laminate for High-Frequency Design
5 min
FR4, being the most popular one, is not always used in high-frequency PCBs because this PCB laminate can degrade the signal performance at high frequencies. Not because they consist of any wrong conduction material, but the reality lies in the substrate dielectric properties. The dielectric itself attenuates the signal at high frequency. So, after a lot of research in this area, we got some really good materials. The three alternatives for high-performance PCBs are Rogers, PTFE, and Teflon laminates. They offer better dielectric control, lower signal loss, and superior thermal stability. But they differ a lot from the cost perspective from standard FR4. In this guide, we will get through:
- Basics of Rogers, PTFE, and Teflon laminates.
- Compare their dielectric constants, losses, and thermal performance
- Provide a detailed design example showing how material choice impacts a PCB trace for RF use.
Why Material Choice Matters in PCB Design
Two key electrical properties of a laminate define how it will behave in high-frequency circuits:
1. Dielectric Constant (Dk or εr):
It determines the speed of signal propagation. Lower the value of Dk means faster signal speed, longer wavelength. The dielectric constant of a material also affects impedance calculation for traces. Rogers typically offers Dk = 2.2–6.5, PTFE/Teflon often ~2.1.
2. Loss Tangent (Df or tan δ):
It represents dielectric losses (how much RF energy is lost as heat). Lower loss tangent means higher efficiency. A table below is given for all FR4, Roger, and PTFE for comparison:
● FR-4: ~0.015–0.02 at 1 GHz
● Rogers RO4350B: ~0.0037
● PTFE/Teflon: ~0.0002–0.0009
Understanding the Materials
1. Rogers Laminates:
Rogers Corporation produces a wide range of high-frequency PCB laminates (e.g., RO4000, RO3000 series). The composition includes hydrocarbon-ceramic or PTFE composites.
Because of the laminate properties, it is excellent from hundreds of MHz into tens of GHz due to low losses. Rogers has better stability to heat than any other high-frequency material. They are particularly used in radar, satellite, and precision RF technologies.
2. PTFE (Polytetrafluoroethylene) Laminates
It is a type of polymer with an extremely low dielectric constant variation over frequency. It has the lowest losses among all but is more affected by heat. It has very good electrical signal handling properties, but is mechanically very soft in nature, because of which the copper layer may expand or contract as per temperature. It is commonly used in medical and radar applications.
3. Teflon Laminates
Teflon is a brand name for PTFE (registered by DuPont/Chemours). In PCB terminology, "Teflon boards" are usually PTFE-based PCBs. Same low-loss, low-Dk characteristics as PTFE, but “Teflon” often refers to pure PTFE or PTFE composites. They need special manufacturing processes due to their softness. And commonly used in very high-frequency microwave boards (>10 GHz), aerospace communication.
Practical Impact: Transmission Line Example
Let’s take a real-world example: Designing a 50 Ω microstrip trace at 10 GHz. Let the thickness of the PCB be 0.8mm and the copper thickness if 35 μm. We’ll calculate the trace width required for 50 Ω impedance.
1. Case A: Rogers RO4350B
Dk = 3.48, Df = 0.0037, Using microstrip impedance formulas:
● Required width ≈ 1.6 mm
● Attenuation ≈ 0.26 dB/inch
2. Case B: PTFE/Teflon
Dk = 2.1, Df = 0.0005, Using microstrip impedance formulas:
● Required width ≈ 2.45 mm
● Attenuation ≈ 0.04 dB/inch
3. Case C: FR-4 (for comparison)
Dk ≈ 4.4, Df ≈ 0.017, Using microstrip impedance formulas:
● Required width ≈ 1.35 mm
● Attenuation ≈ 0.82 dB/inch (significant signal loss at 10 GHz)
Lower Dk means wider traces for the same impedance. This can impact board real estate. PTFE/Teflon drastically outperforms FR-4 and even Rogers for ultra-high frequency due to extremely low loss tangent. Rogers is easier to process than pure PTFE/Teflon.
Choosing the Right Material
When to Choose Rogers:
● Mid- to high-frequency designs up to ~20 GHz.
● Need a balance of performance and manufacturability.
● Mixed-signal boards with both RF and digital sections.
When to Choose PTFE/Teflon:
● Ultra-low loss needed (radar, satellite comms).
● Frequencies >20 GHz.
● High reliability in extreme conditions (space).
Conclusion:
The decision between Rogers, PTFE, and Teflon comes down to:
● Frequency and loss budget
● Manufacturing capability
● Budget
● Mechanical constraints
All these are discussed in a very detailed format in this blog. For many RF designers, Rogers RO4350B is the “sweet spot” for up to 20 GHz. For bleeding-edge, ultra-low-loss systems, PTFE/Teflon remains unmatched. With high-frequency material, we will always encounter some fabrication challenges.
Keep Learning
OPAMP 101: Basics of Operational Amplifiers Every Engineer Should Know
Analog mathematics? Yes, it is what we are going to learn in this series of OPAMP 101. An operational amplifier is the most common and most widely used type of component in an analog circuit. We can not imagine an integrated circuit without amplifiers. It is common, but students, on the other hand, often have a love-hate relationship: “How can something that looks so simple (just a triangle!) cause so much confusion?” An operational amplifier can perform a lot of mathematical operations; we will see t......
What is the Standard Thickness of a PCB?
A Printed Circuit Board (PCB) is the foundation of electronic devices, which serves as a substrate to support electrical components. In PCB design, thickness is a crucial parameter as it influences several key processes. It influences not only the mechanical performance of the board but also the electrical properties, processability, and cost. The prevailing PCB thickness is 1.6 mm, but there will be many further options suitable for various purposes. Knowing the rule and when it’s acceptable to break ......
Rogers vs PTFE vs Teflon: Choosing the Best PCB Laminate for High-Frequency Design
FR4, being the most popular one, is not always used in high-frequency PCBs because this PCB laminate can degrade the signal performance at high frequencies. Not because they consist of any wrong conduction material, but the reality lies in the substrate dielectric properties. The dielectric itself attenuates the signal at high frequency. So, after a lot of research in this area, we got some really good materials. The three alternatives for high-performance PCBs are Rogers, PTFE, and Teflon laminates. ......
How to Select the Best Materials for Your Flexible PCB Designs
Flexible printed circuit boards (Flex PCBs) have revolutionized the electronics industry. Now we can pack the circuit in a small housing space with highly compact, lightweight, and flexible form factors. FPCs are everywhere from wearable devices to medical implants and aerospace systems. These circuits rely on special materials that offer the right balance of mechanical flexibility and electrical performance. When designing a Flex PCB, choosing the right combination of substrates, adhesives, and coati......
Role of Prepreg in Multilayer PCB Manufacturing
A PCB stackup arrangement includes layers, planes, cores, base, substrate, laminate, and prepreg. From Core we can say FR4, Aluminum, Rogers and all. On the other hand prepregs are the dielectric material between the adjacent cores or the core and a layer. In multilayer PCBs, prepreg is a vital part that holds the PCB core and layers together. Once the difference between prepreg and core is clear, what exact material should you use for your application? How do the important electrical parameters chang......
Beyond the Basics: The Role of PTFE PCBs
Polytetrafluoroethylene (PTFE) PCBs are integral to advanced electronic applications. Among various PCB materials, Teflon, the brand name for Polytetrafluoroethylene (PTFE). Teflon PCBs, known for their high frequency and heat resistance properties. All of this is achievable due to its exceptional dielectric properties. RF PCB designs often make use of low-loss PTFE-based materials thanks to their very low dielectric losses and huge range of possible Dk values. Low Dielectric Constant: Enables high-sp......