Lead-Free Solder vs Lead Solder : What is the Difference?
6 min
Solder is used by the majority of electrical devices to connect components to PCBs. The procedure of soldering is, when a solder melts down it will make a connection. This connection can be between pads or wires. Soldering is not like welding, we can attach the two joints by heating them again a lil bit. Although after performing the soldering step the curing and cooling is required. If during the cooling step there is any disturbance occur in the system it will lead to dry joints. Two main varieties of solder are used in the electronics industry:
- Lead-based solder
- Lead-free solder
The classic ingredients for solder are tin and lead. The electronics industry has relied on this combination for a long time. There has been a dramatic transition away from lead-based solders. Which were formerly the norm, due to increased health and environmental concerns. In this article we will learn why lead-free solder has surpassed lead ones. We'll go over the composition differences, melting points and regulatory standards.
What is Lead Solder?
Lead solder is an alloy of solder that contains lead with tin. Lead solder is usually named as 63/37 which is the ratio of tin and lead. Means it will contain 63% tin and 37% lead. But why do we use LEAD based solders? And why are they so popular? The answer is because of their low melting point of about 185°C. There were a number of reasons why this solder was formerly the standard:
Cooling and Curing: Lead solder cools down more slowly than other metal options. This reduces the possibility of the joint cracking also there will be no issues like dry soldering.
Wetting the joints: Wetting the joints means making the two wires which are going to solder more effective. Means giving them an extra adhesiveness. Using this type of solder is effective in wetting joints.
We can not rely on lead based products, its poisonous. Lead has negative impacts on ecosystems and human health. It comes under the health issues linked to lead exposure according to the CDC in the US.
What is Lead-Free Solder?
The amount of metals in lead-free solder compositions might vary. Metals such as tin, copper, silver, nickel, and zinc can be used as components. For better performance and environmental safety lead-free solder substitutes are also available.Lead with alternative metals include bismuth (Bi) or antimony (Sb). Among lead-free mixes, tin-copper is the most popular due to its melting point of 217°C. When compared to conventional lead-tin solders the lead-free solders have unique characteristics. Because of these quirks the manufacturers have to make adjustments to their product designs and processes.
Common Lead-Free Solder Compositions:
- SAC305: 96.5% Tin, 3% Silver, 0.5% Copper and has a melting point: 217-221°C
- SnCu0.7: 99.3% Tin, 0.7% Copper and has a melting point: 227°C
Tin and copper make up the lead-free combination that sees the most action. A greater melting point is associated with lead-free solder than lead-based alternatives. When compared to lead soldering this technique also produces tougher and stronger junctions.
Key Differences Between Lead and Lead-Free Solder:
Comparing Costs of Lead-Free vs Leaded Solder:
Lead is not very expensive, this is the second reason it is used. On the other hand if we use other alternatives or if we use more tin it will be an expensive option. Manufacturers can save up to 10 times if they are using lead. Other alternatives like silver makes the deal more expensive but due to the conductivity can be used in high end systems.
Using lead-free solder could add to the overall cost, not to mention the initial investment. Because more resources and processing to make the lead-free solder is usually more expensive than leaded solder. Equipment wear and tear and energy expenses might both rise due to greater melting points.
Melting Point Equations:
To put a number on this impact, we may utilize a linear equation that describes the connection between alloy composition, melting point, and temperature (Tm):
The equation: T=Tm −kC
Where:
The alloy has a melting point denoted by T.
C is the element's concentration in the alloy.
Tm is the temperature at which a pure metal, like lead or tin, melts.
k remains constant.
Global Regulatory Requirements:
Lead is toxic and can accumulate in the body as a result of chronic exposure. Contaminating land and groundwater, it is a hazardous waste product. The EU Restriction of Hazardous Substances regulation came into effect in 2006. Lead solder is now restricted in EU devices thanks to this rule.
European Union (EU):
European Union (EU) restricts the incorporation of lead and other toxic materials into electrical devices . In homogenous materials, the content cannot be more than 0.1% by weight according to the new limitations regulation.
United States:
While there is no federal RoHS rule, several states have imposed their own regulations. The proven dependability of lead solder leads to its exemption.
Conclusion:
The controversy over lead-free vs lead solder goes beyond a simple technicality. Progress towards a cleaner electronics sector, compliance and sustainability are the key issues. Due to the pervasiveness of electronics in our daily lives it is crucial to steer clear of items containing lead. Electronics assembly is one area where lead-free solder excels. But it isn't a good fit for aeronautical or medical applications. There may not be enough surface tension in lead-free soldered junctions to withstand impact.
This is not a big problem for PCB uses because the majority of electronics are not subject to harsh conditions. Use of lead-free solder has several advantages. At JLCPCB, lead-free solder to meet global environmental standards while ensuring reliable performance. It is crucial for manufacturers, engineers and enthusiasts to understand the important distinctions in composition. In order to educate them to make a decision.
Keep Learning
Common PCB Assembly Methods and Soldering Techniques Explained
Whether you’re designing your first prototype or scaling up to production, understanding PCB assembly methods and soldering techniques is crucial to achieving reliable, high-performance circuit boards. Modern PCBA primarily relies on Surface Mount Technology (SMT) and Through-Hole Technology (THT)—each offering unique advantages for component density, durability, and manufacturability. In this guide, we’ll break down the major PCB assembly methods, key soldering techniques such as reflow and wave sold......
Through-Hole & Surface Mount Technology
Comprehensive Comparison for Circuit Board Designing When it comes to circuit board designing, choosing the right components can make a significant impact on the overall performance and functionality of the device. Two types of electronic components that are commonly used in circuit board designing are through-hole components and surface mount components. In brief article, we will highlight the advantages and disadvantages of these two types of components with a focus on the benefits and drawbacks for......
SMT Assembly Process Explained and Equipment Used: A Step-by-Step Guide to PCBA Manufacturing
Today's high-performance electronics, from pocket-sized smartphones and IoT sensors to sophisticated industrial control systems, are made possible by a manufacturing miracle: Surface Mount Technology (SMT). SMT is the backbone of electronics manufacturing, allowing us to have the incredible component density and miniaturization. A bare circuit board is simply a substrate. The process of transforming it into a functional electronic circuit is known as Printed Circuit Board Assembly. This article outlin......
Solder Paste vs Flux: Key Differences, Uses, and How to Choose for Perfect Soldering
The manufacturing process that turns electronic circuits into working devices depends heavily on PCB assembly. Flux and solder paste are essential parts of this procedure. You need to be aware of their roles and how they help with successful PCB assembly as an electronics enthusiast, engineer, student, or professional. What is Solder Paste? Solder paste is a crucial material used in PCB assembly that facilitates the attachment of electronic components to the circuit board. It is a mixture of finely po......
SMT vs Through Hole:Which PCB Assembly is Most Cost-Effective?
Performance and cost in the realm of electronics production depend on choosing the correct assembly method. Of the several approaches accessible, Surface Mount Technology (SMT) and Through-Hole Technology (THT) are the two most often used ones for PCB assembly. These two assemblies can be combined to create some products or used as individual technologies. Though seemingly little, this variance affects several aspects including board design, materials and techniques employed, heat dissipation, and rel......
Rigid-Flex PCB Assembly: Design, Process, Quality & Cost
Miniaturization, higher functionality, and mechanical adaptability are three main trends in modern electronics. Circuit boards that can tolerate bending, vibration, and compact or small installation spaces are becoming more and more necessary for modern devices like smartphones, medical implants, and aerospace systems. Combining flexibility and stability, rigid-flex PCBs provide both mechanical strength and design freedom, while flexible PCBs allow for bending and folding in confined spaces. This hybr......