内層残留銅率が PCB の厚みと品質に与える影響
1 min
プリント基板 (PCB) の製造では、品質と性能を維持するために精度が重要です。PCB の品質に大きく影響する重要な要素の 1 つは、内層の残留銅率です。この概念は、銅の分布バランスが最終的な基板の厚みに影響を与える多層 PCB で特に重要になります。この記事では、内層の残留銅率が基板の厚みにどのように影響するか、また堅牢で信頼性の高い PCB を確保するためにこの率を最適化することの重要性について説明します。
内層銅が基板の厚みに与える影響
図に示すように、内層の銅被覆率が最小限の場合、(PPプリプレグ)シートは、その厚みに関係なく、層間の隙間を埋めるために均一に広がる必要があります。PPシートが冷えて固まると、樹脂の量が減り、ボード全体の厚みが薄くなります。
残留銅率の重要性
では、基板の厚みが許容限度を下回らないようにするには、内層にどのくらいの量の銅を敷くべきでしょうか。ここで「残留銅率」が重要になります。残留銅率とは、基板の全表面積に対する内層の銅回路パターンの割合を指します。
残留銅率 = 現在の層の銅の面積 / 基板の総面積。
多層積層におけるPPシートの役割
多層基板積層では、PP シートを細かく切断し、内部コア基板と別のコア基板の間、またはコア基板と銅箔の間に配置します。PP 上の樹脂は高温高圧下で溶け、コア基板上の銅のない領域を充填します。冷却後、樹脂は固化し、コア基板と銅箔を接着します。
残留銅率の低下による影響
留銅率が低すぎると、基板全体の厚みが薄くなり、層間で銅が不均一に分布して基板が反ることがあります。
これは、ゴールドフィンガー付きのボードの場合に特に重要です。スロットに正しくフィットさせるには、ボードの厚みを正確に設定する必要があるためです。薄いボードでは、スロットに挿入したときにフィットが緩くなったり、接触不良になったりする可能性があります。
JLCPCB の推奨事項
JLCPCBエンジニアは以下を強く推奨します:
1. ゴールドフィンガー多層基板の場合
特にゴールド フィンガー領域に近い内部層では、空白部分を銅で覆います。これにより、ボードが薄すぎてスロットに収まらない、または線幅が変化するなどの問題を防ぐことができます。
2. 残留銅率が25%未満の場合
不均一な電気メッキを最小限に抑えるには、線幅の不一致や基板の厚みの過度な偏差を引き起こす可能性があるため、空白領域に銅を追加します。
ゴールドフィンガー設計における一般的な問題
内側と外側の両方の層のゴールドフィンガー領域では、頻繁に挿入したり取り外したりすることでインクがゴールドフィンガー スロットに落ちて接触不良やその他の機能上の問題が発生するのを防ぐために、開いているウィンドウがある (つまり、各ゴールデン フィンガー パッド間にソルダー マスク ブリッジがない) ことを確認します。
すべてのタイプの PCB では、ボードのパフォーマンスに影響を与えない限り、可能な限り空白領域に銅を追加します。残留銅率が 25% 未満のボードでは、銅が追加されていることを確認してください。ゴールドフィンガー ボードでは、ゴールドフィンガー領域近くの内層に銅を適用し、外層にはゴールドフィンガー領域に適切に開いたウィンドウを持つはんだマスクが必要です。
PCB ゴールドフィンガー設計における一般的な問題
内側と外側の両方の層のゴールドフィンガー領域では、頻繁に挿入したり取り外したりすることでインクがゴールドフィンガー スロットに落ちて接触不良やその他の機能上の問題が発生するのを防ぐために、開いているウィンドウがある (つまり、各ゴールドフィンガー パッド間にソルダー マスク ブリッジがない) ことを確認します。
すべてのタイプの PCB では、ボードのパフォーマンスに影響を与えない限り、可能な限り空白領域に銅を追加します。残留銅率が 25% 未満のボードでは、銅が追加されていることを確認してください。ゴールド フィンガー ボードでは、ゴールドフィンガー領域近くの内層に銅を適用し、外層にはゴールド フィンガー領域に適切に開いたウィンドウを持つはんだマスクが必要です。
学び続ける
アルミニウム基板が熱伝導性を向上させる仕組み
現代の電子機器が小型化・高性能化するにつれ、熱管理は電子設計における最重要課題の一つとなった。プリント基板(PCB)には多様なコア材と材料が存在する。過去には幅広い材料を扱ってきたが、今日では金属コア基板が主眼となる。基本基板の放熱不良は、電気機器の性能低下、寿命短縮、あるいは致命的な故障を引き起こす。 従来のFR-4基板と比較して、アルミニウム基板は熱伝導性に優れており、効率的な代替手段となります。本記事では、その異なる特性を以下に列挙します。さらに、アルミニウム基板の構造、利点、用途、そして熱伝導性を向上させる仕組みについても検証します。 アルミニウム基板とは? アルミニウムプリント基板(PCB)は金属基板を用いたプリント基板です。回路基板内で発生するパワーエレクトロニクスの熱を制御するために設計されています。基盤基板として従来のガラス繊維(FR-4)の代わりにアルミニウムを採用しています。アルミニウムPCBの基本構造は以下の通りです: 1. 銅配線層:この層の主な機能は、PCB上の全部品に電気的接続性を提供することです。標準的なCCL(1~10オンス)と比較して、使用される銅層は比較的厚くな......
アルミニウム基板の真価を解き放つ:電子機器の放熱性能向上
電子機器の急速な進化の中で、効果的な放熱は電子デバイスの最適な性能と長寿命を確保するために不可欠です。アルミニウム基板は、標準的なFR-4構造と比較して優れた放熱性と熱伝導性を提供し、ゲームチェンジャーとして登場しました。JLCPCBでは、新製品「アルミニウム基板」を驚きの価格たったの2ドルでご提供できることを大変嬉しく思います! 本ブログ記事では、アルミ基板の利点を詳細に解説し、様々な産業分野における多様な応用例を探ります。これにより、電子機器の熱管理手法に革命をもたらすでしょう。 優れた放熱性 アルミニウム基板の主な利点の一つは、その卓越した放熱特性にあります。アルミニウム基板は極めて効率的なヒートシンクとして機能し、重要な部品から熱を素早く放散します。この特性は、LED照明、電源装置、モーターコントローラー、自動車用電子機器など、高熱を発生する用途において特に有益です。熱を効果的に管理することで、アルミニウム基板は性能を低下させ電子機器の寿命を大幅に縮める可能性のある熱関連の問題を防止します。 強化された熱伝達 優れた放熱性に加え、アルミニウム基板は部品と周囲環境間の熱伝達を改善します。アル......
アルミニウム基板と従来型FR4基板:熱管理の比較分析
急速に進化するエレクトロニクスの世界において、熱管理はプリント基板(PCB)の性能と信頼性を確保する上で極めて重要な役割を果たします。電子機器がより小型化・高性能化するにつれ、効果的な放熱は不可欠となっています。本記事では、2つの主要なPCB基板材料であるアルミニウム基板と従来のFR4基板について、包括的な比較分析を行います。両者の熱管理能力、利点、考慮事項を探求し、PCB設計分野の電子機器愛好家、ホビイスト、エンジニア、学生、専門家に向けた貴重な知見を提供します。 アルミニウムPCBの理解 金属コア基板(MCPCB)としても知られるアルミニウムPCBは、従来のFR4基板とは異なる特性を有します。ガラス繊維基板の代わりに、アルミニウムPCBは熱伝導性の高い金属コア(通常はアルミニウムまたは銅製)を採用しています。この金属コアは優れた放熱板として機能し、電力部品から発生する熱を効率的に拡散させます。 アルミニウム基板の利点 熱伝導性の向上:アルミニウム基板はFR4基板と比較して著しく高い熱伝導性を示します。金属コアにより基板全体に熱が迅速に拡散され、ホットスポットを最小限に抑え、最適な熱性能を確保し......
PCB材料ガイド:種類、選定、性能への影響
もしPCB材料が話せたら、FR-4はおそらくこう言うだろう。「私は電子産業の80%を支えているのに、誰も私を評価してくれない」。ロジャースは自慢げに「私は特別だから高価なんだ」と言い、ポリイミドは文字通り自慢して「私は曲がるが、折れない」と言うだろう。 このブログの目的は、利用可能なPCB基板の種類と、それらの材料がPCBの性能、熱安定性、信号品質、そして全体的な寿命にどのように影響するかを紹介することです。PCB材料の選択は、用途と設計の複雑さの2点に基づきます。FR4は現在、すべての愛好家にとって最良の選択ですが、それが失敗する場面も見ていきましょう。なぜ他の材料が必要なのか、高高度や宇宙空間で最高の性能を発揮する材料は何か、このガイドでは必要な情報を網羅します。 PCB材料の基礎 基板材を選択する前に、PCB材料が実際に担う役割を理解しておくと有益です。いいえ、それらは「PCBの緑色の部分」ではありません。電気的挙動、熱性能、機械的剛性、さらには製造性さえも制御するのです。 基板の耐久性における基材の役割 基材はPCBの基盤です。その役割は: 銅配線を固定する 層間の絶縁を提供する 高温下で......
PCB基板におけるカバーレイの重要性を理解する
PCB基板におけるカバーレイの重要性を理解する はじめに: 急速に進化するエレクトロニクス分野において、プリント回路基板(PCB)の重要性は非常に大きいです。この重要な要素は、ほぼすべての電子デバイスのバックボーンです。カバーレイは、プリント基板の性能と耐久性を大幅に向上させる重要な機能です。 この記事では、PCB基板におけるカバーレイの役割、利点、およびイノベーションについて説明します。 カバーレイとは? カバーレイ(Coverlay)はカバーフィルムとも呼ばれ、主にフレキシブルPCBに使用される保護層です。リジッド基板に使用される従来のソルダーマスクとは異なり、カバーレイは優れた絶縁性と保護機能を提供します。一般的にポリイミドで作られた柔軟な誘電体フィルムで構成され、接着剤で積層されます。 ⦁ PCB基板におけるカバーレイの役割 強化された回路保護:カバーレイは、湿気、ほこり、化学物質などの環境要因から繊細な回路を保護する堅固な保護膜を提供し、電子デバイスの寿命と安定性を保証します。 ⦁ 最適な電気絶縁:カバーレイの主な機能の1つは、優れた電気絶縁を提供し、電気短絡を防止し、信号の完全性を維持......
銅の重量とトレース幅:最適なバランスを見つける
プリント回路基板(PCB)設計に関しては、銅の重量とトレース幅の最適なバランスを見つけることが重要です。銅の重量とトレース幅は、プリント基板の性能、信頼性、コストに直接影響します。あなたがエレクトロニクス愛好家であれ、趣味であれ、エンジニアであれ、学生であれ、あるいはその道のプロであれ、PCB設計を成功させるためには、これらのバランスを理解することが不可欠です。 銅重量が重要な理由 銅重量とは、PCB上の銅層の厚さを指します。銅の厚さは、基板の通電容量、放熱性、全体的な耐久性を決定する上で重要な役割を果たします。銅の重量が高いほど、通電容量が大きくなり、放熱性が向上します。しかし、製造コストが高くなり、トレース配線や基板密度に課題が生じます。一方、銅の重量が低いとコストは下がりますが、PCB の能力が制限される可能性があります。 トレース幅の影響 トレース幅とは、PCB 上の導電性銅パスの幅のことです。トレースの抵抗、通電容量、インピーダンスに影響します。トレースの幅が広いほど、より多くの電流を流すことができ、抵抗が低くなります。一方、トレースの幅が狭いほど、スペースは節約できますが、電流の流れが......