JLCPCB ブログ
実用的なPCBガイドと製造の知見で、次なるプロジェクトを簡素化。
人気記事
最新記事
設計の基礎&回路図
LED基板の設計と放熱対策:初心者向けガイド
LED基板の設計は製品の性能と寿命を左右する重要な要素で、特に放熱対策が欠かせません。今回は、LED基板の基本から放熱設計のポイントまで、初心者にもわかりやすく解説します。 LED基板とは?基本構造と用途 LED基板とは、LED(発光ダイオード)を実装するためのプリント基板のことを指します。基板上にLEDチップを配置し、電気回路を形成することで、LEDに電力を供給して発光させる仕組みです。 主に以下の3層構造で、成り立っています。 l 表層の銅箔回路 l 絶縁層 l 基材層 一般的なLED基板の使用例 LED基板は私たちの身の回りで幅広く使用されています。家庭用照明器具、液晶テレビのバックライト、車載ライト、産業用検査装置など、多様な用途で活躍しています。 通常のPCBとの違い LED基板と一般的なPCBの最大の違いは放熱性能の重要度です。 一般的なPCBは電気信号の伝達が主目的ですが、LED基板では熱を効率よく逃がすことが同等以上に重視されるため、アルミ基板や銅基板といった金属基板が選択されることが多くなります。 LED基盤とLED基板の違いはある? 「LED基板」と「LED基盤」は同じものを指......
Jan 22, 2026
製造設計
プリント基板の表面処理を徹底比較(HASL vs ENIG vs ENEPIG)
プリント基板の表面処理は品質と信頼性を左右する重要工程です。 本記事では、代表的な3つの表面処理方法であるHASL、ENIG、ENEPIGの特徴を比較し、用途に応じた最適な選択方法を解説します。 表面処理とは?プリント基板に必要な理由 プリント基板の銅箔が露出したランド部分は、空気中の酸素と反応して約1週間で酸化が進行します。酸化が進むとはんだ付け性が著しく低下し、部品の実装不良や接続不良の原因となります。 表面処理は、銅箔表面に保護膜を形成することでそう言った酸化を防止し、長期間にわたって安定したはんだ付け性を維持する役割を担います。 HASLとは?コスト重視の表面処理 HASL(熱風半田レベラー)は、基板を溶融はんだ槽に浸漬し、熱風で余分なはんだを吹き飛ばす表面処理方法。 比較的歴史が長く、コストパフォーマンスに優れています。 · 比較的低コスト · 優れたはんだ付け性 · 微細パッドに不向き 用途:試作基板、0.65mm以上 主なメリットは、「優れたはんだ付け性」と言う点や、「スルーホール内壁もカバーできる」ところでしょう。 ただし、微細パッド0.5mm以下には不向きのため要注意です。 EN......
Jan 22, 2026
製造設計
多層基板とは?4層・6層基板の設計ポイント
電子機器の小型化・高性能化に欠かせない多層基板について、基本から実践的な設計ポイントまで解説します。 多層基板とは?単層・両面基板との違い 基板選びで迷わないために、まず各タイプの違いを理解しましょう。 多層基板の基本定義と構造 多層基板は、ミルフィーユのように3層以上の銅箔を絶縁材で挟んだプリント基板です。層間は「ビア」と呼ばれる穴で電気的に接続され、基板内部にも配線ができます。表面からは見えない内層に、電源やグランド専用の層を持つのが特徴です。 単層・両面基板との違い 単層基板:表面のみ配線。LEDライトなど簡単な製品向け 両面基板:表裏に配線。家電リモコンなど 多層基板:内部にも配線層。スマホやPCなど高機能製品向け スマートフォン1台には10層以上の多層基板が使われています。 多層基板が使われる代表的な用途 スマートフォン、ノートPC、自動車制御装置、ドローン、Wi-Fiルーター、医療機器など「小さいのに高性能」な製品に採用されています。 基板多層化のメリットと注意点 多層化することで得られる利点と、考慮すべき課題について見ていきましょう。 配線密度・信号品質が向上する理由 両面基板では部......
Jan 19, 2026
設計の基礎&回路図
EasyEDAで初めてのPCB設計:ゼロから発注までの全手順
プリント基板(PCB)の設計と製作は、EasyEDAの登場により初心者でも無料で始められるようになりました。 本記事では、EasyEDAを使ったPCB設計の基礎から実際の発注までを、分かりやすく解説します。 EasyEDAとは?初心者に選ばれる理由 EasyEDAは、中国のLCSCが提供する無料のPCB設計ツールです。回路図エディタ、PCBレイアウトエディタ、豊富な部品ライブラリ、そしてJLCPCBへの直接発注機能を統合したオールインワンの設計環境を提供しています。 EasyEDAの基本概要とできること 回路図作成、PCBレイアウト設計、ガーバーファイル生成ができ、JLCPCBと連携して設計基板を直接発注できます。 初心者でも使いやすい理由(無料・ブラウザ対応など) 完全無料でインストール不要、ブラウザで動作し、豊富な部品ライブラリで配線図も自動取得できます。 他のPCB設計ソフトとの違い KiCadやEagleは操作が複雑ですが、EasyEDAはシンプルで直感的に操作でき初心者に最適です。 EasyEDAを使った回路図作成の基本 EasyEDAでの設計は回路図作成から始まります。新規プロジェクト......
Jan 19, 2026
フレキシブルヒーター基礎
フレキシブルヒーターとは? ポリイミド vs シリコーン
はじめに フレキシブルヒーターは、薄型・軽量でカスタマイズ可能な加熱素子であり、コンパクトまたは複雑な空間で精密な温度制御を行うために使用されます。これらのヒーターは、抵抗加熱によって電気エネルギーを熱に変換するように設計されています。このプロセスでは、フレキシブル基板内に埋め込まれた抵抗素子に電流が流れ、抵抗によって熱が生成されます。使用される材料は、電気を効率的に伝導し、熱を均一に拡散するのに優れています。 絶縁材料に基づいて、フレキシブルヒーターには主に2つのタイプがあります:ポリイミドフレキシブルヒーターとシリコンゴムヒーターです。それぞれのタイプは、さまざまな産業および商業加熱ニーズに適した独自の特性を提供します。 ポリイミドフレキシブルヒーターとシリコンゴムヒーターの違い 仕様 PIフレキシブルヒーター シリコンフレキシブルヒーター 基板厚み 0.09–0.27 mm 1.0–2.0 mm(シリコン層含む) 光透過率 60.2%(50μm PIフィルム) 70.6%(25μm PIフィルム) 0% 使用温度範囲 -40°C~260°C (推奨長期使用:150°C以下) -40°C~30......
Jan 07, 2026
フレキシブルヒーター基礎
ポリイミドフレキシブルヒーターとFPCの違について
はじめに ポリイミド(PI)フレキシブルヒーターとフレキシブルプリント基板(FPC)は構造的に似ているように見えますが、材料・公差・用途は根本的に異なります。PIフレキシブルヒーターは発熱と熱管理を目的に設計され、FPCは信号伝達と電気的相互接続に特化しています。本記事では、それぞれの特徴・構造・機能の違いを解説し、エンジニアが最適なソリューションを選べるよう支援します。 ポリイミドフレキシブルヒーターの特徴 熱管理ソリューションの一つであるポリイミドフレキシブルヒーターの中核機能は、電気エネルギーを熱に変換し、加熱・予熱・特定の熱環境維持のために安定した均一な温度を提供することです。熱的要求と安全性を考慮し、カスタムフレキシブルヒーターは±0.05%の線幅公差で精密な抵抗制御を行い、抵抗値を標準の±5%以内に収めます。 • フレキシブルヒーターは高い加熱効率と高速な熱応答を実現し、均一な温度分布により素早い立ち上がりを可能にし、用途の要求を迅速に満たし、全面にわたって一定の温もりを確保します。 • カスタム製品である電子加熱フィルムは、サイズ・形状・ワット数・温度などに応じて特注設計でき、優れた......
Jan 07, 2026