Flex PCB Design Tips and Tricks
4 min
Flexible printed circuit boards (Flex PCB) are a type of printed circuit board that is made from a flexible material, such as polyimide. FPCBs are used in a wide variety of applications, including consumer electronics, medical devices, and automotive electronics.
flex PCB from jlcpcb
Designing FPCBs can be challenging, as there are a number of unique considerations that must be taken into account. In this article, we will discuss some of the most important flex PCB design tips and tricks.
The outline of a flex PCB refers to the final shape of the board. When designing the outline, it is important to consider the following:
- The outline layer must be unique. Typically, this layer is represented by GM1 or GKO.
- Non-metallic hole annuli or slot frames should also be placed on the outline layer.
- The outline layer should not contain any miscellaneous lines.
- The FPC outline cannot have internal right angles or sharp corners. It must also be closed, and cannot be open.
Outline design example 1
Outline design example 2
Outline design example 3
Outline design example4
Outline design example 5
Ground Copper Design for Flex PCB
The ground copper design is another important consideration for flex PCBs. When designing the ground copper, it is important to avoid large areas of copper, as this can reduce the flexibility of the board. It is also important to design the ground copper in a grid pattern, with a line width of 0.2mm and spacing of 0.2mm.
Ground Copper Design Example 1
Issue: Bubbles during lamination
Cause: Large areas of ground copper with few openings in the solder mask can trap air, which can react with the copper surface during lamination, causing oxidation spots.
Solution: Add solder mask openings or change to a grid copper design.
Ground Copper Design Example 2
Issue: Reduced flexibility
Cause: Large areas of ground copper can reduce the flexibility of the board.
Solution: Design the ground copper in a grid pattern, with a line width of 0.2mm and spacing of 0.2mm.
Ground Copper Design Example 3
Issue: Misalignment of components or insufficient solder during SMT
Cause: Ground copper covering between IC pads or gold finger pads can result in several pads connecting together.
Solution: Do not cover excess copper between pads.
Ground Copper Design Example 4
Issue: Solder bridging and short circuits during soldering
Cause: Thick traces or ground copper on component pads can decrease the spacing between pads.
Solution: Avoid designing thick traces or ground copper on similar pads.
Flex PCB Soldering Gold Finger Design
Soldering gold fingers are used to connect flex PCBs to other components. When designing soldering gold fingers, it is important to consider the following requirements
- Soldering fingers must have pads designed on both the top and bottom layers.
- The lengths of the pads on the upper and lower layers need to be staggered by 0.5mm, and the corresponding solder mask openings should also be staggered by more than 0.5mm.
- The solder mask needs to cover the pad by 0.5mm (this can be achieved by extending the pad).
- Design half-holes at the front of the gold fingers; also design a hole on the finger pad, with an inner diameter of 0.3mm and an outer diameter of 0.5mm.
- The through-holes on the pads need to be staggered and should not be aligned in a single row.
Additional Tips
In addition to the tips discussed above, there are a few other things to keep in mind when designing flex PCBs:
- Use a flexible material that is appropriate for the application.
- Consider the bend radius of the flex PCB.
- Use a solder mask that is compatible with the flexible material.
- Test the flex PCB thoroughly before using it in a production environment.
- By following these tips, you can design flex PCBs that meet your specific needs and requirements.
By following these tips, you can design flex PCBs that meet your specific needs and requirements.
Keep Learning
Understanding Impedance and Its Role in PCB Design
Impedance is a fundamental concept in electrical engineering and circuit design. Today, we will provide an overview of impedance, explain the impedance formula, discuss tools like an impedance calculator, and explain how impedance affects PCB design factors like solder flux and component selection. What is Impedance? Impedance (Z) represents the total opposition to current flow in an AC circuit. It is comprised of both resistance (R) and reactance (X). Resistance opposes current while reactance stores......
PCB Card Edge Connectors : Design Essentials, Gold Finger Optimization, and Manufacturing Strategies for Reliable Integration
PCB card-edge connectors are the unsung heroes of modular electronics. By providing a gold-plated finger interface along a circuit board edge, they allow plug‑and‑play connections between motherboards, expansion cards, and memory modules. Unlike soldered or wired joints, card-edge contacts offer easy replacement and upgrade of components. You imagine swapping a graphics card or SSD by simply unplugging one board and plugging in another. This edge-based interconnect enables high-speed, high-density rou......
Keeping Your PCBs Cool : Practical Heatsink Strategies for Better Thermal Performance
The current PCBs are becoming insane, and hence the cooling of PCBs is absolutely necessary. Large power components such as CPUs, GPUs, SOCs, voltage regulators, and LED drivers all ooze heat as a side-effect of their operation. Therefore, as an example, it is common to have CPUs, GPUs, or SOCs with their own heatsink, or boards that are extremely dense or contain power items such as motors, power transistors, amplifiers, regulators, etc., can end up in hot spots. A small PCB may become hot whena lot ......
Why a Strong PCB Ground Plane Is Key to Noise-Free Designs : From Basics to Optimization and Fixes
Every PCB designer eventually learns that the ground plane is like the unsung hero of the board. They quietly provide a reference point for all signals and a return path for currents. In essence, a ground plane is a large, continuous copper area tied to the 0V ground of the power supply. It spans most of an inner layer (or the entire layer) so that virtually every component lead or trace that needs ground can connect to it via a short via or pad. This creates a solid, low-impedance return path for sig......
From Concept to Production : How PCB DFM Guidelines and Analysis Ensure Smooth Manufacturing Transitions
When designing a product for a mass audience, it is better to test it thoroughly before deploying it to the market. Because the research and development of the product is quite expensive and time-consuming. Designing a PCB that works on your desk is one thing. Once the design is finalised, the PCB is manufactured and assembled repeatedly without any drama. This is where PCB Design for Manufacturing (DFM) quietly saves projects and engineering reputations. Many PCB issues don't come from bad schematics......
PCB Terminal Blocks : A Design Engineer’s Guide to Reliable Wire-to-Board Connections
PCB terminal blocks are the unsung heroes of wire-to-board connections. They can be used to connect or replace wires in industrial controls, power supply, and automotive systems, etc, without needing to re-work the PCB. Terminal blocks can be tight-clamped or screwed, eliminating the guesswork of hand-soldering. However, terminal blocks may be problematic. Loose wiring can vibrate, heavy elements can be subject to solder-joint fatigue, and a lack of creepage or clearance can allow arcs to arc between ......